Triangle law of vector addition of two vectors.

If two non-zero vectors are represented by the two sides of a triangle taken in same order then the resultant is given by the closing side of triangle in opposite order. i.e. $\vec{R}=\vec{A}+\vec{B}$
$\because \overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}$

(1) Magnitude of resultant vector

In $\triangle A B N \cos \theta=\frac{A N}{B} \therefore A N=B \cos \theta$
$\sin \theta=\frac{B N}{B} \therefore B N=B \sin \theta$

In $\triangle O B N$, we have $O B^{2}=O N^{2}+B N^{2}$
$\Rightarrow R^{2}=(A+B \cos \theta)^{2}+(B \sin \theta)^{2}$
$\Rightarrow R^{2}=A^{2}+B^{2} \cos ^{2} \theta+2 A B \cos \theta+B^{2} \sin ^{2} \theta$
$\Rightarrow R^{2}=A^{2}+B^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+2 A B \cos \theta$

$\Rightarrow R^{2}=A^{2}+B^{2}+2 A B \cos \theta$
$\Rightarrow R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$
(2) Direction of resultant vectors: If θ is angle between \vec{A} and \vec{B}, then
$|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$
If \vec{R} makes an angle α with \vec{A}, then in $\triangle O B N$, then
$\tan \alpha=\frac{B N}{O N}=\frac{B N}{O A+A N}$
$\tan \alpha=\frac{B \sin \theta}{A+B \cos \theta}$

