Resolution of vector into components.

Consider a vector \vec{R} in $x-y$ plane as shown in fig. If we draw orthogonal vectors \vec{R}_{x} and \vec{R}_{y} along x and y axes respectively, by law of vector addition, $\vec{R}=\vec{R}_{x}+\vec{R}_{y}$ Now as for any vector $\vec{A}=A \hat{n}$ so, $\vec{R}_{x}=\hat{i} R_{x}$ and $\vec{R}_{y}=\hat{j} R_{y}$
So $\quad \vec{R}=\hat{i} R_{x}+\hat{j} R_{y}$
But from fig $R_{x}=R \cos \theta$
And $\quad R_{y}=R \sin \theta$
Since R and θ are usually known, Equation (ii) and (iii) give the magnitude of the components of \vec{R} along x and y-axes respectively.
Here it is worthy to note once a vector is resolved into its components, the components themselves can be used to specify the vector as -
(1) The magnitude of the vector \vec{R} is obtained by squaring and adding equation (ii) and (iii), i.e.

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

(2) The direction of the vector \vec{R} is obtained by dividing equation (iii) by (ii), i.e.

$$
\tan \theta=\left(R_{y} / R_{x}\right) \quad \text { Or } \quad \theta=\tan ^{-1}\left(R_{y} / R_{x}\right)
$$

