Resolution of vector into components.

Consider a vector \vec{R} in *x*-*y* plane as shown in fig. If we draw orthogonal vectors \vec{R}_x and \vec{R}_y along *x* and *y* axes respectively, by law of vector addition, $\vec{R} = \vec{R}_x + \vec{R}_y$ Now as for any vector $\vec{A} = A \hat{n}$ so, $\vec{R}_x = \hat{i}R_x$ and $\vec{R}_y = \hat{j}R_y$

So $\vec{R} = \hat{i}R_x + \hat{j}R_y$ (i)

But from fig $R_x = R \cos \theta$ (ii)

And $R_y = R \sin \theta$ (iii)

Since *R* and θ are usually known, Equation (ii) and (iii) give the magnitude of the components of \vec{R} along x and *y*-axes respectively.

Here it is worthy to note once a vector is resolved into its components, the components themselves can be used to specify the vector as –

(1) The magnitude of the vector \vec{R} is obtained by squaring and adding equation (ii) and (iii), *i.e.*

$$R = \sqrt{R_x^2 + R_y^2}$$

(2) The direction of the vector \vec{R} is obtained by dividing equation (iii) by (ii), *i.e.*

 $\tan \theta = (R_v / R_x)$ Or $\theta = \tan^{-1}(R_v / R_x)$