Rectangular components of 3-D vector.

$\vec{R}=\vec{R}_{x}+\vec{R}_{y}+\vec{R}_{z}$ or $\vec{R}=R_{x} \hat{i}+R_{y} \hat{j}+R_{z} \hat{k}$
If \vec{R} makes an angle α with x axis, β with y axis and γ with z axis, then

$$
\begin{aligned}
& \Rightarrow \cos \alpha=\frac{R_{x}}{R}=\frac{R_{x}}{\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}}=l \\
& \Rightarrow \cos \beta=\frac{R_{y}}{R}=\frac{R_{y}}{\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}}=m
\end{aligned}
$$

$$
\Rightarrow \cos \gamma=\frac{R_{z}}{R}=\frac{R_{z}}{\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}}=n
$$

Wherel, m, n are called Direction Cosines of the vector \vec{R}

$$
l^{2}+m^{2}+n^{2}=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}=1
$$

Note: When a point P have coordinate (x, y, z) then its position vector $\overrightarrow{O P}=x \hat{i}+\hat{y j}+z \hat{k}$ When a particle moves from point $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$ then its displacement vector

$$
\vec{r}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}
$$

