Rectangular components of 3-D vector.

$$\vec{R} = \vec{R}_x + \vec{R}_y + \vec{R}_z \text{ or } \vec{R} = R_x \hat{i} + R_y \hat{j} + R_z \hat{k}$$

If \vec{R} makes an angle α with x axis, β with y axis and γ with z axis, then

$$\Rightarrow \cos \alpha = \frac{R_x}{R} = \frac{R_x}{\sqrt{R_x^2 + R_y^2 + R_z^2}} = l$$

$$\Rightarrow \cos \beta = \frac{R_y}{R} = \frac{R_y}{\sqrt{R_x^2 + R_y^2 + R_z^2}} = m$$

$$\Rightarrow \cos \gamma = \frac{R_z}{R} = \frac{R_z}{\sqrt{R_x^2 + R_y^2 + R_z^2}} = n$$

Where l, m, n are called Direction Cosines of the vector \vec{R}

$$l^{2} + m^{2} + n^{2} = \cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = \frac{R_{x}^{2} + R_{y}^{2} + R_{z}^{2}}{R_{x}^{2} + R_{y}^{2} + R_{z}^{2}} = 1$$

Note: When a point P have coordinate (x, y, z) then its position vector $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$

When a particle moves from point (x_1, y_1, z_1) to (x_2, y_2, z_2) then its displacement vector

$$\vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$