Relative velocity.

(1) Introduction: When we consider the motion of a particle, we assume a fixed point relative to which the given particle is in motion. For example, if we say that water is flowing or wind is blowing or a person is running with a speed v, we mean that these all are relative to the earth (which we have assumed to be fixed).

Now to find the velocity of a moving object relative to another moving object, consider a particle P whose position relative to frame S is $\overrightarrow{r_{P S}}$ while relative to S^{\prime} is $\overrightarrow{r_{P S^{\prime}}}$. If the position of frames S^{\prime} relative to S at any time is $\vec{r}_{S^{\prime} S}$ then from fig.

$$
\overrightarrow{r_{P S}}=\overrightarrow{r_{P S^{\prime}}}+\overrightarrow{r_{S^{\prime} S}}
$$

Differentiating this equation with respect to time

$$
\frac{d \vec{r}_{P S}}{d t}=\frac{d \vec{r}_{P S^{\prime}}}{d t}+\frac{d \vec{r}_{S^{\prime} S}}{d t}
$$

$$
\begin{array}{ll}
\text { or } & \vec{v}_{P S}=\vec{v}_{P S^{\prime}}+\vec{v}_{S^{\prime} S} \\
\text { or } & \vec{v}_{P S^{\prime}}=\vec{v}_{P S}-\vec{v}_{S^{\prime} S}
\end{array} \quad[\text { as } \vec{v}=\overrightarrow{d r} / d t]
$$

(2) General Formula : The relative velocity of a particle P_{1} moving with velocity $\overrightarrow{v_{1}}$ with respect to another particle P_{2} moving with velocity $\overrightarrow{v_{2}}$ is given by, $\vec{v}_{\mathrm{r}_{12}}=\overrightarrow{v_{1}}-\overrightarrow{v_{2}}$
(i) If both the particles are moving in the same direction then:

$$
v_{r_{12}}=v_{1}-v_{2}
$$

(ii) If the two particles are moving in the opposite direction, then:

$$
v_{r_{12}}=v_{1}+v_{2}
$$

(iii) If the two particles are moving in the mutually perpendicular directions, then:

$$
v_{r_{12}}=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

(iv) If the angle between $\overrightarrow{v_{1}}$ and \vec{v}_{2} be θ_{1} then $v_{r_{12}}=\left[v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2} \cos \theta\right]^{1 / 2}$.
(3) Relative velocity of satellite: If a satellite is moving in equatorial plane with velocity \vec{v}_{s} and a point on the surface of earth with \vec{v}_{e} relative to the center of earth, the velocity of satellite relative to the surface of earth

$$
\vec{v}_{s e}=\vec{v}_{s}-\vec{v}_{e}
$$

So if the satellite moves form west to east (in the direction of rotation of earth on its axis) its velocity relative to earth's surface will be $v_{s e}=v_{s}-v_{e}$

And if the satellite moves from east to west, i.e., opposite to the motion of earth, $v_{s e}=v_{s}-\left(-v_{e}\right)=v_{s}+v_{e}$
(4) Relative velocity of rain: If rain is falling vertically with a velocity \vec{v}_{R} and an observer is moving horizontally with speed \vec{v}_{M} the velocity of rain relative to observer will be $\vec{v}_{R M}=\overrightarrow{v_{R}}-\vec{v}_{M}$

Which by law of vector addition has magnitude

$$
v_{R M}=\sqrt{v_{R}^{2}+v_{M}^{2}}
$$

Direction $\theta=\tan ^{-1}\left(v_{M} / v_{R}\right)$ with the vertical as shown in fig.
(5) Relative velocity of swimmer: If a man can swim relative to water with velocity \vec{v} and water is flowing relative to ground with velocity \vec{v}_{R} velocity of man relative to ground \vec{v}_{M} will be given by:

$$
\vec{v}=\vec{v}_{M}-\vec{v}_{R} \text {, i.e. } \vec{v}_{M}=\vec{v}+\vec{v}_{R}
$$

So if the swimming is in the direction of flow of water, $v_{M}=v+v_{R}$
And if the swimming is opposite to the flow of water, $v_{M}=v-v_{R}$
(6) Crossing the river: Suppose, the river is flowing with velocity v_{r}. A man can swim in still water with velocity v_{m}. He is standing on one bank of the river and wants to cross the river two cases arise.
(i) To cross the river over shortest distance: That is to cross the river straight, the man should swim making angle θ with the upstream as shown.

Here $O A B$ is the triangle of vectors, in which $\overrightarrow{O A}=\overrightarrow{v_{m}}, \overrightarrow{A B}=\overrightarrow{v_{r}}$. Their resultant is given by $\overrightarrow{O B}=\vec{v}$. The direction of swimming makes angle θ with upstream. From the triangle $O B A$, we find,

$$
\cos \theta=\frac{v_{r}}{v_{m}} \quad \text { Also } \quad \sin \alpha=\frac{v_{r}}{v_{m}}
$$

Where α is the angle made by the direction of swimming with the shortest distance ($O B$) across the river.

Time taken to cross the river:If ube the width of the river, then time taken to cross the river will be given by

$$
t_{1}=\frac{w}{v}=\frac{w}{\sqrt{v_{m}^{2}-v_{r}^{2}}}
$$

(ii) To cross the river in shortest possible time: The man should swim perpendicular to the bank.

The time taken to cross the river will be:

$$
t_{2}=\frac{w}{v_{m}}
$$

In this case, the man will touch the opposite bank at a distance $A B$ downstream. This distance will be given by:

$$
A B=v_{r} t_{2}=v_{r} \frac{w}{v_{m}} \quad \text { Or } \quad A B=\frac{v_{r}}{v_{m}} w
$$

