Differential calculus.

The differential coefficient or derivative of variable y with respect to variable x is defined as the instantaneous rate of change of $y w . r$ r.t. x. It is denoted by $\frac{d y}{d x}$

Geometrically the differential coefficient of $y=f(x)$ with respect to x at any point is equal to the slope of the tangent to the curve representing $y=f(x)$ at that point

i.e. $\frac{d y}{d x}=\tan \theta$.

Note: Actually $\frac{d y}{d x}$ is a rate measurer.
If $\frac{d y}{d x}$ is positive, it means y is increasing with increasing of x and vice-versa.
For small change Δx we use $\Delta y=\frac{d y}{d x}$. Δx

Example: (1) Instantaneous speed $v=\frac{d s}{d t}$
(2) Instantaneous acceleration $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$
(3) Force $F=\frac{d p}{d t}$
(4) Angular velocity $\omega=\frac{d \theta}{d t}$
(5) Angular acceleration $\alpha=\frac{d \omega}{d t}$
(6) Power $P=\frac{d W}{d t}$
(7) Torque $\tau=\frac{d L}{d t}$
(1) Fundamental formulae of differentiation:

Function	Differentiation
If c is some constant	$\frac{d}{d x}(c)=0$
If $y=c x$ where c is a constant	$\frac{d y}{d x}=\frac{d}{d x}(c x)=c \frac{d x}{d x}=c$

If $y=c u$ where c is a constant and u is a function of x	$\frac{d y}{d x}=\frac{d}{d x}(c u)=c \frac{d u}{d x}$
If $y=x^{n}$ where n is a real number	$\frac{d y}{d x}=n x^{n-1}$
If $y=u^{\prime \prime}$ where n is a real number and u is a function of x	$\frac{d y}{d x}=n u^{n-1} \frac{d u}{d x}$
If $y=u+v$ where u and v are the functions of x	$\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
If $y=u v$ where u and v are functions of x (product formula)	$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
If $y=\frac{u}{v}$ where u and v are the functions of x (quotient formula)	$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
If $y=f(u)$ and $u=f(x)$	$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
If $y=(a x+b)^{n}$	$\frac{d y}{d x}=n(a x+b)^{n-1} \times \frac{d}{d x}(a x+b)$
If $y=\sin x$	$\frac{d y}{d x}=\frac{d}{d x}(\sin x)=\cos x$
If $y=\cos x$	$\frac{d y}{d x}=\frac{d}{d x}(\cos x)=-\sin x$
If $y=\tan x$	$\frac{d y}{d x}=\frac{d}{d x}(\tan x)=\sec ^{2} x$
If $y=\cot x$	$\frac{d y}{d x}=\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
If $y=\sec x$	$\frac{d y}{d x}=\frac{d}{d x}(\sec x)=\tan x \sec x$
If $y=\operatorname{cosec} x$	$\frac{d y}{d x}=\frac{d}{d x}(\operatorname{cosec} x)=-\cot x \operatorname{cosec} x$
If $y=\sin u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\sin u)=\cos u \frac{d(u)}{d x}$
If $y=\cos u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\cos u)=-\sin u \frac{d(u)}{d x}$
If $y=\tan u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d(u)}{d x}$
If $y=\cot u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\cot u)=-\operatorname{cosec}^{2} u \frac{d(u)}{d x}$
If $y=\sec u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\sec u)=\sec u \tan u \frac{d(u)}{d x}$

If $y=\operatorname{cosec} u$ where u is the function of x	$\frac{d y}{d x}=\frac{d}{d x}(\operatorname{cosec} u)=-\operatorname{cosec} u \cot u \frac{d(l}{d x}$
If $y=\log _{a} x$	$\frac{d y}{d x}=\frac{1}{x} \log _{a} e$

(2) Maxima and minima:If a quantity y depends on another quantity x in a manner shown in figure. It becomes maximum at x_{1} and minimum at x_{2}.

At these points the tangent to the curve is parallel to X-axis and hence its slope is $\tan \theta=0$. but the slope of the curve equals the rate of change $\frac{d y}{d x}$. Thus, at a maximum or minimum $\frac{d y}{d x}=0$

Just before the maximum the slope is positive, at the maximum it is zero and just after the maximum it is negative. Thus $\frac{d y}{d x}$ decreases at a maximum and hence the rate of change of $\frac{d y}{d x}$ is negative at a maximum. i.e., $\frac{d}{d x}\left(\frac{d y}{d x}\right)<0$ at a maximum.

Hence the condition of maxima: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0 \quad$ (Second derivative test)
Similarly, at a minimum the slope changes from negative to positive. The slope increases at such a point and hence $\frac{d}{d x}\left(\frac{d y}{d x}\right)>0$

Hence the condition of minima: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0 . \quad$ (Second derivative test)

