Integral calculus.

The process of integration is just the reverse of differentiation. The symbol \int is used to denote integration.

If $f(x)$ is the differential coefficient of function $F(x)$ with respect to x, then by integrating $f(x)$ we can get $F(x)$ again.

(1) Fundamental formulae of integration:

$\int x^{n} d x=\frac{x^{n+1}}{n+1}$, provided $n \neq-1$	$\int \sec ^{2} x d x=\tan x$
$\int d x=\int x^{0} d x=\frac{x^{0+1}}{0+1}=x$	$\int \operatorname{cosec}{ }^{2} x d x=-\cot x$
$\int(u+v) d x=\int u d x+\int v d x$	$\int \sec x \tan x d x=\sec x$
$\int c u d x=c \int u d x$ where c is a constant and u is a function of x.	$\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x$
$\int c x^{n} d x=c \frac{x^{n+1}}{n+1}$	$\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) \frac{d}{d x}(a x+b)}=\frac{(a x+b)^{n+1}}{a(n+1)}$
$\int x^{-1} d x=\int \frac{d x}{x}=\log _{e} x$	$\int \frac{a}{(a x+b)} d x=\frac{a \log _{e}(a x+b)}{\frac{d}{d x}(a x+b)}=\log _{e}(a x+b)$
$\int e^{x} d x=e^{x}$	$\int e^{a x+b} d x=\frac{e^{a x+b}}{\frac{d}{d x}(a x+b)}=\frac{e^{a x+b}}{a}$
$\int a^{x} d x=\frac{a^{x}}{\log _{e} a}$	$\int a^{c x+d} d x=\frac{a^{c x+d}}{\log _{e} a \frac{d}{d x}(c x+d)}=\frac{a^{c x+d}}{c \log _{e} a}$
$\int \sin x d x=-\cos x$	$\int \sec ^{2}(a x+b) d x=\frac{\tan (a x+b)}{\frac{d}{d x}(a x+b)}=\frac{\tan (a x+b)}{a}$
$\int \sin n x d x=\frac{-\cos n x}{n}$	$\int \operatorname{cosec}^{2}(a x+b) d x=\frac{-\cot (a x+b)}{\frac{d}{d x}(a x+b)}=\frac{-\cot (a x+v)}{a}$

$\int \cos x d x=\sin x$	$\int \sec (a x+b) \tan (a x+b) d x$
$=\frac{\sec (a x+b)}{\frac{d}{d x}(a x+b)}=\frac{\sec (a x+b)}{a}$	
$\int \cos n x d x=\frac{\sin n x}{n}$	$\int \operatorname{cosec}(a x+b) \cot (a x+b) d x$
	$=\frac{-\operatorname{cosec}(a x+b)}{\frac{d}{d x}(a x+b)}=\frac{-\operatorname{cosec}(a x+b)}{a}$

(2) Method of integration:Sometimes, we come across some functions which cannot be integrated directly by using the standard integrals. In such cases, the integral of a function can be obtained by using one or more of the following methods.
(i) Integration by substitution: Those functions which cannot be integrated directly can be reduced to standard integrand by making a suitable substitution and then can be integrated by using the standard integrals. To understand the method, we take the few examples.
(ii) Integration by parts: This method of integration is based on the following rule :

Integral of a product of two functions $=$ first function \times integral of second function integral of (differential coefficient of first function \times integral of second function).
Thus, if u and v are the functions of x, then $\int u v d x=u \int v d x-\int\left[\frac{d u}{d x} \times \int v d x\right] d x$
(3) Definite integrals: When a function is integrated between definite limits, the integral is called definite integral. For example,
$\int_{a}^{b} f(x) d x$ is definite integral of $f(x)$ between the limits a and b and is written as $\int_{a}^{b} f(x) d x \neq\left. F(x)\right|_{a} ^{b}=F(b)-F(a)$

Here a is called the lower limit and b is called the upper limit of integration.

Geometrically $\int_{a}^{b} f(x) d x$ equals to area of curve $F(x)$ between the limits a and b.

