Integral calculus.

The process of integration is just the reverse of differentiation. The symbol \int is used to denote integration.

If f(x) is the differential coefficient of function F(x) with respect to x, then by integrating f(x) we can get F(x) again.

(1) Fundamental formulae of integration:

$\int x^n dx = \frac{x^{n+1}}{n+1}, \text{ provided } n \neq -1$	$\int \sec^2 x dx = \tan x$
$\int dx = \int x^0 dx = \frac{x^{0+1}}{0+1} = x$	$\int \cos ec^2 x dx = -\cot x$
$\int (u+v)dx = \int udx + \int vdx$	$\int \sec x \tan x dx = \sec x$
$\int c u dx = c \int u dx$	$\int \operatorname{cosec} x \operatorname{cot} x dx = -\operatorname{cosec} x$
where c is a constant and u is a function of x .	
$\int cx^n dx = c \frac{x^{n+1}}{n+1}$	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)\frac{d}{dx}(ax+b)} = \frac{(ax+b)^{n+1}}{a(n+1)}$
$\int x^{-1} dx = \int \frac{dx}{x} = \log_e x$	$\int \frac{a}{(ax+b)} dx = \frac{a \log_e (ax+b)}{\frac{d}{dx}(ax+b)} = \log_e (ax+b)$
$\int e^x dx = e^x$	$\int e^{ax+b} dx = \frac{e^{ax+b}}{\frac{d}{dx}(ax+b)} = \frac{e^{ax+b}}{a}$
$\int a^x dx = \frac{a^x}{\log_e a}$	$\int a^{cx+d} dx = \frac{a^{cx+d}}{\log_e a \frac{d}{dx}(cx+d)} = \frac{a^{cx+d}}{c \log_e a}$
$\int \sin x dx = -\cos x$	$\int \sec^2(ax+b)dx = \frac{\tan(ax+b)}{\frac{d}{dx}(ax+b)} = \frac{\tan(ax+b)}{a}$
$\int \sin nx dx = \frac{-\cos nx}{n}$	$\int \operatorname{cosec}^{2}(ax+b)dx = \frac{-\cot(ax+b)}{\frac{d}{dx}(ax+b)} = \frac{-\cot(ax+v)}{a}$

$\int \cos x dx = \sin x$	$\int \sec (ax + b) \tan (ax + b) dx$ $= \frac{\sec (ax + b)}{\frac{d}{dx}(ax + b)} = \frac{\sec (ax + b)}{a}$
$\int \cos nx dx = \frac{\sin nx}{n}$	$\int \operatorname{cosec} (ax+b) \cot (ax+b) dx$ $= \frac{-\operatorname{cosec} (ax+b)}{\frac{d}{dx}(ax+b)} = \frac{-\operatorname{cosec} (ax+b)}{a}$

(2) **Method of integration:**Sometimes, we come across some functions which cannot be integrated directly by using the standard integrals. In such cases, the integral of a function can be obtained by using one or more of the following methods.

(i) Integration by substitution: Those functions which cannot be integrated directly can be reduced to standard integrand by making a suitable substitution and then can be integrated by using the standard integrals. To understand the method, we take the few examples.

(ii) Integration by parts: This method of integration is based on the following rule :

Integral of a product of two functions = first function \times integral of second function – integral of (differential coefficient of first function \times integral of second function).

Thus, if *u* and *v* are the functions of *x*, then $\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \times \int v \, dx \right] dx$

(3) **Definite integrals:** When a function is integrated between definite limits, the integral is called definite integral. For example,

 $\int_{a}^{b} f(x) dx \text{ is definite integral of } f(x) \text{ between the limits } a \text{ and } b \text{ and is written as}$ $\int_{a}^{b} f(x) dx \neq F(x) |_{a}^{b} = F(b) - F(a)$

Here *a* is called the lower limit and *b* is called the upper limit of integration.

Geometrically $\int_{a}^{b} f(x) dx$ equals to area of curve F(x) between the limits *a* and *b*.