Coulomb's Law.

If two stationary and point charges \mathcal{Q}_1 and \mathcal{Q}_2 are kept at a distance r, then it is found that force of attraction

or repulsion between them is $F \propto \frac{Q_1Q_2}{r^2}$ i.e., $F = \frac{kQ_1Q_2}{r^2}$; (k = Proportionality constant)

- (1) **Dependence of k:**Constant k depends upon system of units and medium between the two charges.
- (i) Effect of units
- (a) In C.G.S. for air $k=1, F=\frac{Q_1\,Q_2}{r^2}$ Dyne

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N - m^2}{C^2}, \quad F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2}$$
 (b) In S.I. for air

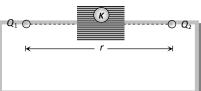
Note:
$$\varepsilon_0 = \text{Absolute permittivity of air or free space} = \frac{8.85 \times 10^{-12}}{N - m^2} \left(= \frac{Farad}{m} \right)$$
. Its Dimension is $[ML^{-3}T^4A^2]$

 ϵ_0 Relates with absolute magnetic permeability (μ_0) and velocity of light (c) according to the following

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

(ii) Effect of medium

(a) When a dielectric medium is completely filled in between charges rearrangement of the charges inside the dielectric medium takes place and the force between the same two charges decreases by a factor of K known as dielectric constant or specific inductive capacity (SIC) of the medium, K is also called relative permittivity ε_r of the medium (relative means with respect to free space).


$$F_{\rm m}=\frac{F_{\rm air}}{K}=\frac{1}{4\pi\varepsilon_0K}.\frac{Q_1Q_2}{r^2}$$
 Hence in the presence of medium

Here
$$\varepsilon_0 K = \varepsilon_0 \ \varepsilon_r = \varepsilon$$
 (permittivity of medium)

(b) If a dielectric medium (dielectric constant K, thickness t) is partially filled between the charges

then effective air separation between the charges becomes $(r-t+t\sqrt{K})$

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{(r - t + t\sqrt{K})^2}$$
 Hence force

coulomb's Coulomb's of law:Vector form of law is $\overrightarrow{F}_{12} = K. \frac{q_1 q_2}{r^3} \overrightarrow{r}_{12} = K. \frac{q_1 q_2}{r^2} \widehat{r}_{12}, \text{ where } \widehat{r}_{12} \text{ is the unit vector from first charge to second charge}$ along the line joining the two charges.

(3) A comparative study of fundamental forces of nature

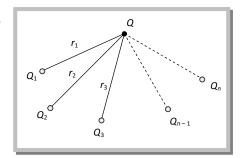
S.No.	Force	Nature and formula	Range	Relative
				strength
(i)	Force of gravitation between two masses	Attractive $F = Gm_1m_2/r^2$, obey's Newton's third law of motion, it's a conservative force	Long range (between planets and between electron and proton)	1
(ii)	Electromagnetic force (for stationary and moving charges)	Attractive as well as repulsive, obey's Newton's third law of motion, it's a conservative force	Long (up to few kelometers)	10 ³⁷
(iii)	Nuclear force (between nucleons)	Exact expression is not known till date. However in some cases empirical		10 ³⁹ (strongest)

		formula $U_0 e^{r/r_0}$ can be		
		utilized for nuclear potential		
		energy U_0 and r_0 are		
		constant.		
(iv)	Weak force (for	Formula not known	Short (upto 10 ⁻¹⁵ m)	10 ²⁴
	processes like β			
	decay)			

Note: Coulombs law is not valid for moving charges because moving charges produces magnetic field also.

Coulombs law is valid at a distance greater than 10^{-15} m.

A charge Q_1 exert some force on a second charge Q_2 . If third charge Q_3 is brought near, the force of Q_1 exerted on Q_2 remains unchanged.


Ratio of gravitational force and electrostatic force between (i) Two electrons is $10^{-43}/1$. (ii) Two protons is $10^{-36}/1$ (iii) One proton and one electron $10^{-39}/1$.

Decreasing order to fundamental forces $F_{Nuclear} > F_{Electromag\ netic} > F_{Weak} > F_{Gravitatio\ nal}$

(4) **Principle of superposition:**According to the principle of super position, total force acting on a given charge due to number of charges is the vector sum of the individual forces acting on that charge due to all the charges.

Consider number of charge \mathcal{Q}_1 , \mathcal{Q}_2 , \mathcal{Q}_3 ...are applying force on a charge Q Net force on Q will be

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_{n-1} + \vec{F}_n$$

Concepts

Two point charges separated by a distance r in vacuum and a force F acting between them. After filling a dielectric medium having dielectric constant K completely between the charges, force

between them decreases. To maintain the force as before separation between them changes to $r\sqrt{K}$. This distance known as effective air separation.