Electrical Field.

A positive charge or a negative charge is said to create its field around itself. If a charge Q_1 exerts a force on charge Q_2 placed near it, it may be stated that since Q_2 is in the field of Q_1 , it experiences some force, or it may also be said that since charge Q_1 is inside the field of Q_2 , it experience some force. Thus space around a charge in which another charged particle experiences a force is said to have electrical field in it.

(1) **Electric field intensity**^(E)**:** The electric field intensity at any point is defined as the force

experienced by a unit positive charge placed at that point. $\vec{E} = \frac{\vec{F}}{q_{\theta}}$ $\stackrel{+Q}{\bigcirc}$ $\stackrel{(q_0)}{\bigcirc}$

Where $q_0 \rightarrow 0$ so that presence of this charge may not affect the source charge Q and its electric field is not changed, therefore expression for electric field intensity can be better written

 $\vec{E} = \lim_{q_{\theta} \to \theta} \frac{\vec{F}}{q_{\theta}}$

(2) **Unit and Dimensional formula:**its S.I. unit $-\frac{Newton}{coulomb} = \frac{volt}{meter} = \frac{Joule}{coulomb \times meter}$ and C.G.S. unit – Dyne/stat coulomb. Dimension:[E] = [$MLT^{-3}A^{-1}$]

(3) **Direction of electric field:** Electric field (intensity) \vec{E} is a vector quantity. Electric field due to a positive charge is always away from the charge and that due to a negative charge is always towards the charge

(4) **Relation between electric force and electric field:** In an electric field \vec{E} a charge (Q) experiences a force F = QE. If charge is positive then force is directed in the direction of field while if charge is negative force acts on it in the opposite direction of field

$$\xrightarrow{+Q \bigcirc -F} \overrightarrow{E} \xrightarrow{F} \overrightarrow{C} \xrightarrow{-Q} \overrightarrow{E}$$

(5) **Super position of electric field** (electric field at a point due to various charges): The resultant electric field at any point is equal to the vector sum of electric fields at that point due to various charges.

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$$

The magnitude of the resultant of two electric fields is given by

 $E = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\theta}$ and the direction is given by $\tan \alpha = \frac{E_2\sin\theta}{E_1 + E_2\cos\theta}$

(6) **Electric field due to continuous distribution of charge:** A system of closely spaced electric charges forms a continuous charge distribution

Continuous charge distribution											
Linear charge distribution				Surface charge distribution				Volume charge distribution			
In	this	distribution	charge	In	this	distribution	charge	In	this	distribution	charge

distributed on the surface.	distributed in the whole volume			
For example: Charge on a	of the body.			
conducting sphere, charge on a	For example:Non conducting			
sheet etc. Relevant parameter is	charged sphere. Relevant			
σ which is called surface charge	parameter is ρ which is called			
density i.e.,	volume charge density i.e.,			
$\sigma = \frac{\text{charge}}{\text{area}}$	$\rho = \frac{\text{charge}}{\text{volume}}$			
0	Q			
$\sigma = \frac{\varepsilon}{4\pi R^2}$	$\rho = \frac{z}{\frac{4}{3}\pi R^3}$			
	distributed on the surface. For example: Charge on a conducting sphere, charge on a sheet etc. Relevant parameter is σ which is called surface charge density i.e., $\sigma = \frac{\text{charge}}{\text{area}}$ $\sigma = \frac{Q}{4\pi R^2}$			

To find the field of a continuous charge distribution, we divide the charge into infinitesimal charge elements. Each infinitesimal charge element is then considered, as a point charge and electric field \vec{dE} is determined due to this charge at given point. The Net field at the given point is the summation of fields of all the elements. i.e., $\vec{E} = \int \vec{dE}$