Electric Potential Energy.

(1) Potential energy of a charge:Work done in bringing the given charge from infinity to a point in the electric field is known as potential energy of the charge. Potential can also be written as potential energy per unit charge. i.e. $\quad V=\frac{W}{Q}=\frac{U}{Q}$.
(2) Potential energy of a system of two charges:Since work done in bringing charge Q_{2} from ∞ to point B is $W=Q_{2} V_{B}$, where V_{B} is potential of point B due to charge Q_{1} i.e. $V_{B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1}}{r}$

$$
\text { So, } \quad W=U_{2}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q_{1} Q_{2}}{r}
$$

This is the potential energy of charge Q_{2}, similarly potential energy of charge Q_{1} will be $U_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q_{1} Q_{2}}{r}$
Hence potential energy of $\mathrm{Q}_{1}=$ Potential energy of $\mathrm{Q}_{2}=$ potential energy of system $U=k \frac{Q_{1} Q_{2}}{r}$ (in C.G.S. $\left.U=\frac{Q_{1} Q_{2}}{r}\right)$

Note: Electric potential energy is a scalar quantity so in the above formula take sign of Q_{1} and Q_{2}.
(3) Potential energy of a system of \mathbf{n} charges:In a system of n charges electric potential energy is calculated for each pair and then all energies so obtained are added algebraically. i.e. $U=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1} Q_{2}}{r_{12}}+\frac{Q_{2} Q_{3}}{r_{23}}+\ldots\right]$ and in case of continuous distribution of charge. As $\Rightarrow U=\int V d Q$
E.g. Electric potential energy for a system of three charges

Potential energy $=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1} Q_{2}}{r_{12}}+\frac{Q_{2} Q_{3}}{r_{23}}+\frac{Q_{3} Q_{1}}{r_{31}}\right]$

While potential energy of any of the charge say Q_{1} is $\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1} Q_{2}}{r_{12}}+\frac{Q_{3} Q_{1}}{r_{31}}\right]$
Note: For the expression of total potential energy of a system of n charges consider $\frac{n(n-1)}{2}$ number of pair of charges.
(4) Electron volt (eV):It is the smallest practical unit of energy used in atomic and nuclear physics. As electron volt is defined as "the energy acquired by a particle having one quantum of charge 1 e when accelerated by 1 volt" i.e. $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{C} \times \frac{1 \mathrm{~J}}{\mathrm{C}}=1.6 \times 10^{-19} \mathrm{~J}=1.6 \times 10^{-12} \mathrm{erg}$ Energy acquired by a charged particle in eV when it is accelerated by V volt is $\mathrm{E}=($ charge in quanta) \times (p.d. in volt)

Commonly asked examples:

S.No.	Charge	Accelerated by p.d.	Gain in K.E.
(i)	Proton	$5 \times 10^{4} \mathrm{~V}$	$\mathrm{~K}=\mathrm{e} \times 5 \times 10^{4} \mathrm{~V}=5 \times 10^{4} \mathrm{eV}=8 \times 10^{-15} \mathrm{~J}$ [JIPMER 1999]
(ii)	Electron	100 V	$\mathrm{K}=\mathrm{e} \times 100 \mathrm{~V}=100 \mathrm{eV}=1.6 \times 10^{-17} \mathrm{~J}$ [MP PMT 2000; AFMC $\mathbf{1 9 9 9}$
(iii)	Proton	1 V	$\mathrm{~K}=\mathrm{e} \times 1 \mathrm{~V}=1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ [CBSE 1999]
(iv)	0.5 C	2000 V	$\mathrm{~K}=0.5 \times 2000=1000 \mathrm{~J}$ [JIPMER 2002]
(v)	$\alpha-$		
particle	$10^{6} \mathrm{~V}$	$\mathrm{~K}=(2 \mathrm{e}) \times 10^{6} \mathrm{~V}=2 \mathrm{MeV}$ [MP PET/PMT 1998]	

(5) Electric potential energy of a uniformly charged sphere:Consider a uniformly charged sphere of radius R having a total charge Q. The electric potential energy of this sphere is equal to the work done in bringing the charges from infinity to assemble the sphere.

$$
U=\frac{3 Q^{2}}{20 \pi \varepsilon_{0} R}
$$

(6) Electric potential energy of a uniformly charged thin spherical shell:

$$
U=\frac{Q^{2}}{8 \pi \varepsilon_{0} R}
$$

(7) Energy density: The energy stored per unit volume around a point in an electric field is given by

$$
U_{e}=\frac{U}{\text { Volume }}=\frac{1}{2} \varepsilon_{0} E^{2} . \text { If in place of vacuum some medium is present then } U_{e}=\frac{1}{2} \varepsilon_{0} \varepsilon_{r} E^{2}
$$

Concepts

(t) Electric potential energy is not localized but is distributed all over the field
© If a charge moves from one position to another position in an electric field so it's potential energy change and work done in this changing is $\boldsymbol{W}=\boldsymbol{U}_{\boldsymbol{f}}-\boldsymbol{U}_{\boldsymbol{i}}$
(s) If two similar charge comes closer potential energy of system increases while if two dissimilar charge comes closer potential energy of system decreases.

