Electric Potential Energy.

(1) **Potential energy of a charge:** Work done in bringing the given charge from infinity to a point in the electric field is known as potential energy of the charge. Potential can also be written as potential energy per unit charge. i.e. $V = \frac{W}{Q} = \frac{U}{Q}$.

(2) **Potential energy of a system of two charges:** Since work done in bringing charge Q_2 from ∞ to point B is $W = Q_2 V_B$, where V_B is potential of point B due to charge Q_1 i.e. $V_B = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r}$

$$\bigcirc \begin{array}{c}
Q_1 \\
Q_2 \\
Q_$$

So,
$$W = U_2 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r}$$

This is the potential energy of charge Q₂, similarly potential energy of charge Q₁ will be $U_1 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1Q_2}{r}$

Hence potential energy of Q₁ = Potential energy of Q₂ = potential energy of system $U = k \frac{Q_1 Q_2}{r}$ (in C.G.S.

$$U = \frac{Q_1 Q_2}{r})$$

Note: Electric potential energy is a scalar quantity so in the above formula take sign of Q1 and Q2.

(3) **Potential energy of a system of n charges:**In a system of n charges electric potential energy is calculated for each pair and then all energies so obtained are added algebraically. i.e.

 $U = \frac{1}{4\pi\varepsilon_0} \left[\frac{Q_1 Q_2}{r_{12}} + \frac{Q_2 Q_3}{r_{23}} + \dots \right] \text{ and in case of continuous distribution of charge. As } c^{III} \rightarrow U = \int V \, dQ$

E.g. Electric potential energy for a system of three charges

Potential energy =
$$\frac{1}{4\pi\varepsilon_0} \left[\frac{Q_1Q_2}{r_{12}} + \frac{Q_2Q_3}{r_{23}} + \frac{Q_3Q_1}{r_{31}} \right]$$

While potential energy of any of the charge say Q_1 is $\frac{1}{4\pi\varepsilon_0} \left[\frac{Q_1Q_2}{r_{12}} + \frac{Q_3Q_1}{r_{31}} \right]$

Note: For the expression of total potential energy of a system of n charges consider $\frac{n(n-1)}{2}$ number of pair of charges.

(4) **Electron volt (eV):** It is the smallest practical unit of energy used in atomic and nuclear physics. As electron volt is defined as "the energy acquired by a particle having one quantum of charge 1e when accelerated by 1volt" i.e. $1eV = 1.6 \times 10^{-19} C \times \frac{1J}{C} = 1.6 \times 10^{-19} J = 1.6 \times 10^{-12} \text{ erg}$ Energy acquired by a charged particle in eV when it is accelerated by V volt is E = (charge in quanta) × (p.d. in volt)

S.No.	Charge	Accelerated by p.d.	Gain in K.E.
(i)	Proton	$5 \times 10^4 \text{ V}$	$K = e \times 5 \times 10^4 V = 5 \times 10^4 eV = 8 \times 10^{-15} J$ [JIPMER 1999]
(ii)	Electron	100 V	K = e × 100 V = 100 eV = 1.6×10^{-17} J [MP PMT 2000; AFMC
			1999]
(iii)	Proton	1 V	K = e × 1 V = 1 eV = 1.6 × 10 ⁻¹⁹ J [CBSE 1999]
(iv)	0.5 C	2000 V	K = 0.5 × 2000 = 1000 J [JIPMER 2002]
(v)	α-	10 ⁶ V	K = (2e) × 10 ⁶ V = 2 MeV [MP PET/PMT 1998]
	particle		

Commonly asked examples:

(5) **Electric potential energy of a uniformly charged sphere:**Consider a uniformly charged sphere of radius R having a total charge Q. The electric potential energy of this sphere is equal to the work done in bringing the charges from infinity to assemble the sphere.

$$U = \frac{3Q^2}{20\pi\varepsilon_0 R}$$

(6) Electric potential energy of a uniformly charged thin spherical shell:

$$U = \frac{Q^2}{8\pi\varepsilon_0 R}$$

(7) **Energy density:** The energy stored per unit volume around a point in an electric field is given by

$$U_e = \frac{U}{\text{Volume}} = \frac{1}{2} \varepsilon_0 E^2$$
. If in place of vacuum some medium is present then $U_e = \frac{1}{2} \varepsilon_0 \varepsilon_r E^2$

Concepts

- @ Electric potential energy is not localized but is distributed all over the field
- The a charge moves from one position to another position in an electric field so it's potential energy change and work done in this changing is $W = U_f U_i$
- If two similar charge comes closer potential energy of system increases while if two dissimilar charge comes closer potential energy of system decreases.