Neutral Point.

A neutral point is a point where resultant electrical field is zero. It is obtained where two electrical field are equal and opposite. Thus neutral points can be obtained only at those points where the resultant field is subtractive. Thus it can be obtained.

(1) At an internal point along the line joining two like charges(Due to a system of two like point charge):Suppose two like charges. Q_1 and Q_2 are separated by a distance x from each other along a line as shown in following figure.

If N is the neutral point at a distance x_1 from Q_1 and at a distance $x_2(=x - x_1)$ from Q_2 then –

At N | *E.F.* due to Q_1 | = | *E.F.* due to Q_2 | i.e., $\frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{x_1^2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_2}{x_2^2} \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{x_1}{x_2}\right)^2$ Short trick : $x_1 = \frac{x}{1 + \sqrt{Q_2/Q_1}}$ and $x_2 = \frac{x}{1 + \sqrt{Q_1/Q_2}}$

Note: In the above formula if $Q_1 = Q_2$, neutral point lies at the center so remember that resultant field at the midpoint of two equal and like charges is zero. (2) At an external point along the line joining two like charges (Due to a system of two unlike point charge):Suppose two unlike charge Q_1 and Q_2 separated by a distance x from each other.

Here neutral point lies outside the line joining two unlike charges and also it lies nearer to charge which is smaller in magnitude.

If $|Q_1| < |Q_2|$ then neutral point will be obtained on the side of Q_1 , suppose it is at a distance I from Q_1

Hence at neutral point ; $\frac{kQ_1}{l^2} = \frac{kQ_2}{(x+l)^2} \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{l}{x+l}\right)^2$

Short τ **rick**: $l = \frac{x}{\left(\sqrt{Q_2/Q_1} - 1\right)}$

Note: In the above discussion if $|Q_1| \neq Q_2|$ neutral point will be at infinity.