Redistribution of Charge between Two Capacitors.

When a charged capacitor is connected across an uncharged capacitor, then redistribution of charge occur to equalize the potential difference across each capacitor. Some energy is also wasted in the form of heat.

Suppose we have two charged capacitors C_{1} and C_{2} after disconnecting these two from their respective batteries. These two capacitors are connected to each other as shown below (positive plate of one capacitor is connected to
 positive plate of other while negative plate of one is connected to negative plate of other)
Charge on capacitors redistributed and new charge on them will be $Q_{1}^{\prime}=Q\left(\frac{C_{1}}{C_{1}+C_{2}}\right)$, $Q_{2}^{\prime}=Q\left(\frac{C_{2}}{C_{1}+C_{2}}\right)$
The common potential $V=\frac{Q_{1}+Q_{2}}{C_{1}+C_{2}}=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}$ and loss of energy $\Delta U=\frac{C_{1} C_{2}}{2\left(C_{1}+C_{2}\right)}\left(V_{1}-V_{2}\right)^{2}$

Note: Two capacitors of capacitances C_{1} and C_{2} are charged to potential of V_{1} and V_{2} respectively. After disconnecting from batteries they are again connected to each other with reverse polarity i.e., positive plate of a capacitor connected to negative plate of other. So common potential $V=\frac{Q_{1}-Q_{2}}{C_{1}+C_{2}}=\frac{C_{1} V_{1}-C_{2} V_{2}}{C_{1}+C_{2}}$.

