Grouping of Resistance.

Series
(1)
(2) Same current flows through each resistance
but potential difference distributes in the ratio of
resistance i.e. $V \propto R$
(5) Potential difference across any resistance $V^{\prime}=\left(\frac{R^{\prime}}{R_{e q}}\right) \cdot V$

Where $\mathrm{R}^{\prime}=$ Resistance across which potential
(5) Current through any resistance

Note: In case of resistances in series, if one resistance gets open, the current in the whole circuit become zero and the circuit stops working. Which don't happen in case of parallel gouging.

Decoration of lightning in festivals is an example of series grouping whereas all household appliances connected in parallel grouping.

Using n conductors of equal resistance, the number of possible combinations is $2 \mathrm{n}-1$.
If the resistance of n conductors are totally different, then the number of possible combinations will be 2 n .

