1. Series combination

(i) Total power consumed

$$
1 \mathrm{P}_{\text {total }}=1 \mathrm{P}_{1}+1 \mathrm{P}_{2}+\ldots \ldots
$$

(ii) If ' n ' bulbs are identical,

$$
\text { Ptotal }=\mathrm{PN}
$$

(iii)

$$
\text { Pconsumed }(\text { Brightness }) \propto \mathrm{V} \propto \mathrm{R} \propto 1 \text { Prated }
$$

i.e. in series combination bulb of lesser wattage will give more bright light and p.d. appeared across it will be more.

2. Parallel combination

(i) Total power consumed

$$
\mathrm{P}_{\text {total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} \ldots \ldots+\mathrm{P}_{\mathrm{n}}
$$

(ii) If ' n ' identical bulbs are in parallel.

$$
P_{\text {total }}=n \mathrm{P}
$$

(iii)

Pconsumed(Brightness) $\propto \operatorname{PR} \propto \mathrm{I} \propto 1 \mathrm{R}$
i.e. in parallel combination, bulb of greater wattage will give more bright light and more current will pass through it.

