## Stretching of Wire.

If a conducting wire stretches, its length increases, area of cross-section decreases so resistance increases but volume remain constant.

Suppose for a conducting wire before stretching its length $=I 1$, area of cross-section = A1,
radius $=\mathrm{r} 1$, diameter $=\mathrm{d} 1$, and resistance $R_{1}=\rho \frac{l_{1}}{A_{1}}$
Before stretching
after stretching


After stretching length $=12$, area of cross-section $=A 2$, radius $=r 2$, diameter $=\mathrm{d} 2$ and resistance $=R_{2}=\rho \frac{l_{2}}{A_{2}}$

Ratio of resistances $\frac{R_{1}}{R_{2}}=\frac{l_{1}}{l_{2}} \times \frac{A_{2}}{A_{1}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}=\left(\frac{A_{2}}{A_{1}}\right)^{2}=\left(\frac{r_{2}}{r_{1}}\right)^{4}=\left(\frac{d_{2}}{d_{1}}\right)^{4}$
(1) If length is given then $R \propto l^{2} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$
(2) If radius is given then $R \propto \frac{1}{r^{4}} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{4}$

Note: After stretching if length increases by n times then resistance will increase by n 2 times i.e.
$R_{2}=n^{2} R_{1}$. Similarly if radius be reduced to $\frac{1}{n}$ times then area of cross-section decreases $\frac{1}{n^{2}}$ times so
the resistance becomes $n 4$ times i.e. $R_{2}=n^{4} R_{1}$.
After stretching if length of a conductor increases by $\mathrm{x} \%$ then resistance will increases by $2 \mathrm{x} \%$ (valid only if $\mathrm{x}<10 \%$ )

