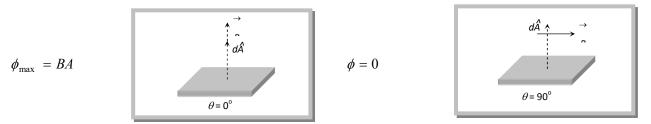
Magnetic Flux

The total number of magnetic lines of force passing normally through an area placed in a magnetic field is equal to the magnetic flux linked with that area.

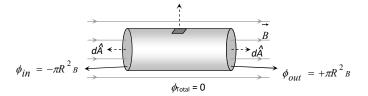
 θ

For elementary area dA of a surface flux linked $d\phi = B dA \cos \theta$ or $d\phi = \vec{B} \cdot d\vec{A}$

So, Net flux through the surface $\phi = \oint \vec{B} \cdot d\vec{A} = BA \cos \theta$

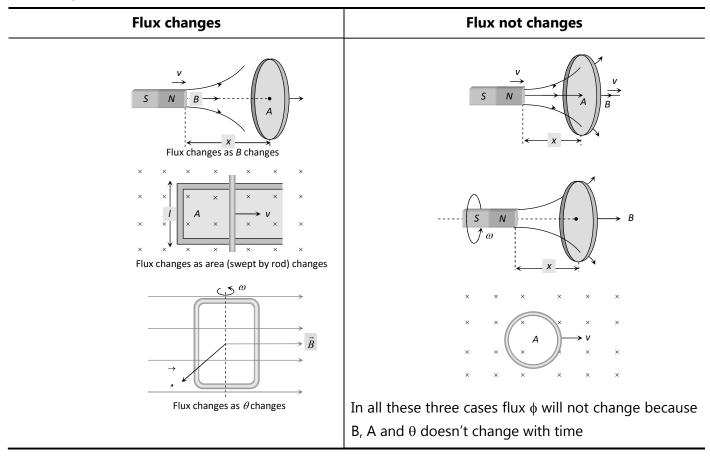

For N-turns coil ϕ = NBA cos θ

(1) Unit and Dimension


Magnetic flux is a scalar quantity it's S.I. unit is weber (wb), CGS unit is Maxwell or Gauss × cm²; $1wb = 10^{8} Maxwell$. Other units: Tesla × m² = $\frac{N \times m}{Amp} = \frac{Joule}{Amp} = \frac{Volt \times Coulomb}{Amp} = Volt \times sec$ = Ohm × Coulomb = Henry × Amp. It's dimensional formula [ϕ] = [ML²T⁻²A⁻¹]

(2) Maximum and Zero flux

If $\theta = 0^{\circ}$, i.e. plane is held perpendicular to the direction of magnetic field then flux from the surface is maximum and if $\theta = 90^{\circ}$ i.e. plane is held parallel to the direction of magnetic field then flux linked with the surface is zero.



Note: In case of a body present in a field, either uniform or non-uniform, outward flux is taken to be positive while inward negative and Net flux linked with a closed surface is zero i.e. $\phi = \oint \vec{B} \cdot d\vec{s} = 0$

(3) Variation of magnetic flux

We know that magnetic flux linked with an area A is $\phi = BA \cos\theta$ i.e. ϕ will change if either B, A or θ will change

