Growth and Decay of Current in LR-Circuit.

If a circuit containing a pure inductor L and a resistor R in series with a battery and a key then on closing the circuit current through the circuit rises exponentially and reaches up to a certain maximum value (steady state). If circuit is opened from its steady state condition then current through the circuit decreases exponentially.

The value of current at any instant of time t after closing the circuit (i.e. during the rising of
current) is given by $\boldsymbol{i}=\boldsymbol{i}_{\mathbf{0}}\left[\mathbf{1}-\boldsymbol{e}^{-\frac{R}{L} t}\right] ;$ where $i_{0}=i_{\max }=\frac{E}{R}=$ steady state current.
The value of current at any instant of time t after opening from the steady state condition (i.e. during the decaying of current) is given by $i=i_{0} e^{-\frac{R}{L} t}$
(1) Time constant (τ)

In this circuit $\tau=\frac{L}{R}$; It's unit is second. In other words the time interval, during which the current in an inductive circuit rises to 63% of its maximum value at make, is defined as time constant or it is the time interval, during which the current after opening an inductive circuit falls to 37% of its maximum value.

Note: The dimensions of $\frac{L}{R}$ are same as those of time i.e. MOLOT1
Half life (T) : In this time current reduces to 50% of its initial max value i.e. if $t=T$ then $i=\frac{i_{0}}{2}$ and again half-life obtained as $\mathrm{T}=0.693 \frac{L}{R}$ or $\mathrm{T}=70 \%$ of time constant.

Now from $U=\frac{1}{2} L i^{2}$ so in half life time current changes from ${ }^{i_{0} \rightarrow \frac{i_{0}}{2}}$ hence energy changes from $U_{0} \rightarrow \frac{U_{0}}{4}$

(2) Behavior of inductor

The current in the circuit grows exponentially with time from 0 to the maximum value $i\left(=\frac{E}{R}\right)$. Just after closing the switch as $i=0$, inductor act as open circuit i.e. broken wires and long after the switch has been closed as $i=i 0$, the inductor act as a short circuit i.e. a simple connecting wire.

