Parallel RLC Circuits.

$i_{R}=\frac{V_{0}}{R}=V_{0} G$
$i_{L}=\frac{V_{0}}{X_{L}}=V_{0} S_{L}$
$i_{C}=\frac{V_{0}}{X_{C}}=V_{0} S_{C}$

(1) Current and phase difference

From phasor diagram current $i=\sqrt{i_{R}^{2}+\left(i_{C}-i_{L}\right)^{2}}$ and phase difference
$\phi=\tan ^{-1} \frac{\left(i_{C}-i_{L}\right)}{i_{R}}=\tan ^{-1} \frac{\left(S_{C}-S_{L}\right)}{G}$
(2) Admittance (Y) of the circuit

From equation of current $\frac{V_{0}}{Z}=\sqrt{\left(\frac{V_{0}}{R}\right)^{2}+\left(\frac{V_{0}}{X_{L}}-\frac{V_{0}}{X_{C}}\right)^{2}} \Rightarrow$
$\frac{1}{Z}=Y=\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)^{2}}=\sqrt{G^{2}+\left(S_{L}-S_{C}\right)^{2}}$
(3) Resonance

At resonance (i) $i_{C}=i_{L} \Rightarrow i_{\text {min }}=i_{R}$ (ii) $\frac{V}{X_{C}}=\frac{V}{X_{L}} \Rightarrow S_{C}=S_{L} \Rightarrow \Sigma S=0$
(iii) $Z_{\text {max }}=\frac{V}{i_{R}}=R \quad$ (iv) $\phi=0 \Rightarrow$ p.f. $=\cos \phi=1=$ maximum (v) Resonant frequency
$\Rightarrow v=\frac{1}{2 \pi \sqrt{L C}}$
(4) Current resonance curve

