Terms Related to ac Circuits.

(1) Resistance (R): The opposition offered by a conductor to the flow of current through it is defined as the resistance of that conductor. Reciprocal of resistance is known as conductance (G)

i.e.
$$G = \frac{1}{R}$$

(2) Impedance (Z): The opposition offered by the capacitor, inductor and conductor to the flow

of ac through it is defined as impedance. Its unit is ohm (
$$\Omega$$
).
$$Z = \frac{V_0}{i_0} = \frac{V_{rms}}{i_{rms}}$$

(3) Reactance (X): The opposition offered by inductor or capacitor or both to the flow of ac through it is defined as reactance. It is of following two type –

Inductive reactance (XL)	Capacitive reactance (XC)
(i) Offered by inductive circuit	(i) Offered by capacitive circuit
(ii) $X_L = \omega L = 2\pi \nu L$	(ii) $X_C = \frac{1}{\omega C} = \frac{1}{2\pi \nu C}$
(iii) $v_{dc} = 0$ so for dc, XL = 0	(iii) For dc XC = ∞
(iv) XL- ν Graph $x_{\iota} \uparrow$	(iv) XC - ν Graph $\chi_c \uparrow$

Note: Resultant reactance of LC circuit is defined as $X = XL \sim XC$.

- (4) Admittance (Y): Reciprocal of impedance is known as admittance $Y = \frac{1}{Z}$. its unit is mho.
- (5) Susceptance (S): the reciprocal of reactance is defined as susceptance $S = \frac{1}{X}$. it is of two type

$$S_L = \frac{1}{X_L} = \frac{1}{2\pi v\,L}$$
 (i) Inductive susceptance,

$$S_C = \frac{1}{X_C} = \omega C = 2\pi v C$$