Radioactive Series.

If the isotope that results from a radioactive decay is itself radioactive then it will also decay and so on.

The sequence of decays is known as radioactive decay series. Most of the radio-nuclides found in nature are members of four radioactive series. These are as follows

Mass number	Series (Nature)	Parent	Stable and product	Integer n	Number of lost particles
4n	Thorium (natural)	₉₀ Th ²³²	$_{82} Pb^{208}$	52	α = 6, β = 4
4n + 1	Neptunium (Artificial)	93 Np ²³⁷	83 Bi ²⁰⁹	52	$\alpha = 8$, $\beta = 5$
4n + 2	Uranium (Natural)	$_{92}U^{238}$	₈₂ Pb ²⁰⁶	51	α = 8, β = 6
4n + 3	Actinium (Natural)	₈₉ Ac ²²⁷	₈₂ Pb ²⁰⁷	51	$\alpha = 7$, $\beta = 4$

Note: The 4n + 1 series starts from 94 $^{PU}^{^{241}}$ but commonly known as neptunium series because neptunium is the longest lived member of the series.

The 4n + 3 series actually starts from $^{92}\,U^{235}$.