Diode Valve.

Inventor: Fleming

Principle: Thermionic emission

Number of electrodes: Two

Working: When plate potential (V_p) is positive, plate current (i_p) flows in the circuit (because some emitted electrons reaches to plate). If + V_p increases i_p also increases and finally becomes maximum (saturation).

Note: If $V_p \rightarrow$ Negative; No current will flow

If $V_p \rightarrow$ Zero; current flows due to very less number of highly energized electrons

(1) Space charge

If V_p is zero or negative, then electrons collect around the plate as a cloud which is called space charge. space charge decreases the emission of electrons from the cathode.

(2) Characteristic curve of a diode

A graph represents the variation of i_p with V_p at a given filament current (i_f) is known as characteristic curve.

The curve is not linear hence diode valve is known as non-ohmic device.

(i) **Space charge limited region (SCLR)**: In this region current is space charge limited current. Also $i_p \propto V_p^{3/2} \Rightarrow i_p = kV_p^{3/2}$; where k is a constant depending on metal as well as on the shape and area of the cathode. This is called child's law.

(ii) Linear region (LR): $i_p \propto V_p$

(iii) **Saturated region or temperature limited region**: In this part, the current is independent of potential difference applied between the cathode and anode.

 $i_p \neq f(V_p) i_p = f$ (Temperature)

The saturation current follows Richardson Dushman equation i.e. $i = AT^2 e^{-\phi/kT}$

Note: The small increase in i_p after saturation stage due to field emission is known as Shottkey effect.

(iv) **Diode resistance**

(a) Static plate resistance or dc plate resistance: $R_p = \frac{V_p}{i_p}$.

(b) Dynamic or ac plate resistance : If at constant filament current, a small change ΔV_P in the plate potential produces a small change Δi_p in the plate current, then the ratio $\Delta V_p / \Delta i_p$ is

called the dynamic resistance, or the 'plate resistance' of the diode $r_p = \frac{\Delta V_p}{\Delta i_p}$.

Note: In SCLR $r_p < R_p$, In TLR $R_p < r_p$ and $r_p = \infty$.

(3) Uses of diode valve

(i) As a rectifier

- (ii) As a detector
- (iii) As a transmitter
- (iv) As a modulator

(4) Diode valve as a rectifier

Rectifier is a device which is used to convert ac into dc

(ix)	Form factor = 1.57	1.11
(x)	Ripple frequency – equal to the frequency of	Double the frequency of input ac
	input ac	

(5) Filter circuit

Filter circuits smooth out the fluctuations in amplitude of ac ripple of the output voltage obtained from a rectifier.

(i) Filter circuit consists of capacitors or/ and choke coils.

(ii) A capacitor offers a high resistance to low frequency ac ripple (infinite resistance to dc) and a low resistance to high frequency ac ripple. Therefore, it is always used as a shunt to the load.

(iii) A choke coil offers high resistance to high frequency ac, and almost zero resistance to dc. It is used in series.

(iv) π – Filter is best for ripple control.

(v) For voltage regulation choke input filter (L-filter) is best.