Propagation of Errors.

(1) Error in sum of the quantities: Suppose $x=a+b$

Let $\Delta \mathrm{a}=$ absolute error in measurement of a
$\Delta \mathrm{b}=$ absolute error in measurement of b
$\Delta x=$ absolute error in calculation of x i.e. sum of a and b.
The maximum absolute error in x is $\Delta x= \pm(\Delta a+\Delta b)$
Percentage error in the value of $x=\frac{(\Delta a+\Delta b)}{a+b} \times 100 \%$
(2) Error in difference of the quantities: Suppose $x=a-b$

Let $\Delta \mathrm{a}=$ absolute error in measurement of a ,
$\Delta \mathrm{b}=$ absolute error in measurement of b
$\Delta x=$ absolute error in calculation of x i.e. difference of a and b .
The maximum absolute error in x is $\Delta x= \pm(\Delta a+\Delta b)$
Percentage error in the value of $x=\frac{(\Delta a+\Delta b)}{a-b} \times 100 \%$
(3) Error in product of quantities: Suppose $x=a \times b$

Let $\Delta \mathrm{a}=$ absolute error in measurement of a ,
$\Delta b=$ absolute error in measurement of b
$\Delta x=$ absolute error in calculation of x i.e. product of a and b .
The maximum fractional error in x is $\frac{\Delta x}{x}= \pm\left(\frac{\Delta a}{a}+\frac{\Delta b}{b}\right)$
Percentage error in the value of $x=($ Percentage error in value of $a)+$ (Percentage error in value of b)
(4) Error in division of quantities: Suppose $x=\frac{a}{b}$

Let $\Delta \mathrm{a}=$ absolute error in measurement of a ,
$\Delta b=$ absolute error in measurement of b
$\Delta x=$ absolute error in calculation of x i.e. division of a and b.
The maximum fractional error in x is $\frac{\Delta x}{x}= \pm\left(\frac{\Delta a}{a}+\frac{\Delta b}{b}\right)$

Percentage error in the value of $x=($ Percentage error in value of $a)+$ (Percentage error in value of b)
(5) Error in quantity raised to some power: Suppose $x=\frac{a^{n}}{b^{m}}$

Let $\Delta \mathrm{a}=$ absolute error in measurement of a ,
$\Delta \mathrm{b}=$ absolute error in measurement of b
$\Delta x=$ absolute error in calculation of x
The maximum fractional error in x is $\frac{\Delta x}{x}= \pm\left(n \frac{\Delta a}{a}+m \frac{\Delta b}{b}\right)$
Percentage error in the value of $x=n$ (Percentage error in value of $a)+m$ (Percentage error in value of b)

Note: The quantity which have maximum power must be measured carefully because its contribution to error is maximum.

