Microscope.

It is an optical instrument used to see very small objects. Its magnifying power is given by

$$
m=\frac{\text { Visual angle with instrument }(\beta)}{\text { Visual angle when object is placed at least distance of distinct vision }(\alpha)}
$$

(1) Simple microscope
(i) It is a single convex lens of lesser focal length.
(ii) Also called magnifying glass or reading lens.
(iii) Magnification's, when final image is formed at D and ∞ (i.e. ${ }^{m}$ and $^{m}{ }^{m}$)

$$
m_{D}=\left(1+\frac{D}{f}\right)_{\max \text { and }} m_{\infty}=\left(\frac{D}{f}\right)_{\min }
$$

Note: $m_{\text {max }},-m_{\text {min. }}=1$

If lens is kept at a distance a from the eye then $m_{D}=1+\frac{D-a}{f}$ and $m_{\infty}=\frac{D-a}{f}$
(2) Compound microscope
(i) Consist of two converging lenses called objective and eye lens.
(ii) $f_{\text {eye lens }}>f_{\text {objective }}$ and
$(\text { diameter })_{\text {eye lens }}>(\text { diameter })_{\text {objective }}$
(iii) Final image is magnified, virtual and inverted.
(iv) ${ }^{u_{0}}=$ Distance of object from objective
(o), $v_{0}=$ Distance of image $\left(A^{\prime} B^{\prime}\right)$ formed
by objective from objective, $u_{e}=$ Distance of $A^{\prime} B^{\prime}$ from eye lens, ve $=$ Distance of final image from eye lens, $\mathrm{f0}=$ Focal length of objective, $\mathrm{fe}=$ Focal length of eye lens.

Magnification:

$$
m_{D}=-\frac{v_{0}}{u_{0}}\left(1+\frac{D}{f_{e}}\right)=-\frac{f_{0}}{\left(u_{0}-f_{0}\right)}\left(1+\frac{D}{f_{e}}\right)=-\frac{\left(v_{0}-f_{0}\right)}{f_{0}}\left(1+\frac{D}{f_{e}}\right)
$$

$$
m_{\infty}=-\frac{v_{0}}{u_{0}} \cdot \frac{D}{F_{e}}=\frac{-f_{0}}{\left(u_{0}-f_{0}\right)}\left(\frac{D}{f_{e}}\right)=-\frac{\left(v_{0}-f_{0}\right)}{f_{0}} \cdot \frac{D}{F_{e}}
$$

Length of the tube (i.e. distance between two lenses)

When final image is formed at D;

$$
L_{D}=v_{0}+u_{e}=\frac{u_{0} f_{0}}{u_{0}-f_{0}}+\frac{f_{e} D}{f_{e}+D}
$$

When final images is formed at ∞;

$$
L_{\infty}=v_{0}+f_{e}=\frac{u_{0} f_{0}}{u_{0}-f_{0}}+f_{e}
$$

(Do not use sign convention while solving the problems)

Note: $\quad m_{\infty}=\frac{\left(L_{\infty}-f_{0}-f_{e}\right) D}{f_{0} f_{e}}$
For maximum magnification both f_{0} and f_{e} must be less.
$m=m_{\text {objective }} \times m_{\text {eye lens }}$
If objective and eye lens are interchanged, practically there is no change in magnification.
(3) Resolving limit and resolving power: In reference to a microscope, the minimum distance between two lines at which they are just distinct is called Resolving limit (RL) and its reciprocal is called Resolving power (RP)

$$
\text { R.L. }=\frac{\lambda}{2 \mu \sin \theta} \text { and } R . P .=\frac{2 \mu \sin \theta}{\lambda} \Rightarrow R . P . \propto \frac{1}{\lambda}
$$

$\lambda=$ Wavelength of light used to illuminate the object,

$\mu=$ Refractive index of the medium between object and objective,
$\theta=$ Half angle of the cone of light from the point object, $\mu \sin \theta=$ Numerical aperture.

Note: Electron microscope: electron beam $(\lambda \approx 1 A)$ is used in it so it's R.P. is approx. 5000 times more than that of ordinary microscope $(\lambda \approx 5000 \AA)$

