## Refraction from Curved Surface.


$\mu_{1}=$ Refractive index of the medium from which light rays are coming (from object).
$\mu_{2}=$ Refractive index of the medium in which light rays are entering.
$u=$ Distance of object, $v=$ Distance of image, $R=$ Radius of curvature
Refraction formula: $\frac{\mu_{2}-\mu_{1}}{R}=\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}$ (use sign convention while solving the problem)

Note: Real image forms on the side of a refracting surface that is opposite to the object, and virtual image forms on the same side as the object.

Lateral (Transverse) magnification $m=\frac{I}{O}=\frac{\mu_{1} v}{\mu_{2} u}$.

## Specific Example

In a thin spherical fish bowl of radius 10 cm filled with water of refractive index $4 / 3$ there is a small fish at a distance of 4 cm from the center C as shown in figure. Where will the image of fish appears, if seen from E
(a) 5.2 cm (b) 7.2 cm (c) $\quad 4.2 \mathrm{~cm}$ (d) 3.2 cm

Solution: (a) By using $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$

$$
\begin{aligned}
& \text { Where }{ }^{\mu_{1}=\frac{4}{3}, \mu_{2}=1, u=-6 \mathrm{~cm}, \mathrm{v}=\text { ? }} \\
& \text { On putting values } v=-5.2 \mathrm{~cm}
\end{aligned}
$$



