Calculation of Necessary Force in Different Conditions.

If $W=$ weight of the body, $\theta=$ angle of friction, $\mu=\tan \theta=$ coefficient of friction then we can calculate necessary force for different condition in the following manner :
(1) Minimum pulling force \boldsymbol{P} at an angle $\boldsymbol{\alpha}$ from the horizontal By resolving P in horizontal and vertical direction (as shown in figure) For the condition of equilibrium

$$
F=P \cos \alpha \quad \text { and } \quad R=W-P \sin \alpha
$$

By substituting these value in $F=\mu R$

$$
\begin{aligned}
& P \cos \alpha=\mu(W-P \sin \alpha) \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W-P \sin \alpha) \quad[\text { As } \mu=\tan \theta] \\
& \Rightarrow P=\frac{W \sin \theta}{\cos (\alpha-\theta)}
\end{aligned}
$$

(2) Minimum pushing force \boldsymbol{P} at an angle α from the horizontal

By Resolving P in horizontal and vertical direction (as shown in the figure)
For the condition of equilibrium

$$
F=P \cos \alpha \quad \text { and } \quad R=W+P \sin \alpha
$$

By substituting these value in $F=\mu R$
$\Rightarrow P \cos \alpha=\mu(W+P \sin \alpha)$
$\Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W+P \sin \alpha) \quad$ [As $\mu=\tan \theta$]
$\Rightarrow P=\frac{W \sin \theta}{\cos (\alpha+\theta)}$

(3) Minimum pulling force \boldsymbol{P} to move the body up an inclined plane

By Resolving P in the direction of the plane and perpendicular to the plane (as shown in the figure)

For the condition of equilibrium

$$
R+P \sin \alpha=W \cos \lambda
$$

$\therefore R=W \cos \lambda-P \sin \alpha$
and $\quad F+W \sin \lambda=P \cos \alpha$
$\therefore F=P \cos \alpha-W \sin \lambda$

By substituting these values in $F=\mu R$ and solving we get
$P=\frac{W \sin (\theta+\lambda)}{\cos (\alpha-\theta)}$

(4) Minimum force on body in downward direction along the surface of inclined plane to start its motion

By Resolving P in the direction of the plane and perpendicular to the plane (as shown in the figure

For the condition of equilibrium

$$
R+P \sin \alpha=W \cos \lambda
$$

$\therefore R=W \cos \lambda-P \sin \alpha$
and $\quad F=P \cos \alpha+W \sin \lambda$
By substituting these values in $F=\mu R$

$$
P=\frac{W \sin (\theta-\lambda)}{\cos (\alpha-\theta)}
$$

(5) Minimum force to avoid sliding a body down an inclined plane

By Resolving P in the direction of the plane and perpendicular to the plane (as shown in the figure)

For the condition of equilibrium

$$
\begin{array}{ll}
& R+P \sin \alpha=W \cos \lambda \\
\therefore & R=W \cos \lambda-P \sin \alpha \\
\text { and } & P \cos \alpha+F=W \sin \lambda \\
\therefore & F=W \sin \lambda-P \cos \alpha
\end{array}
$$

By substituting these values in $F=\mu R$ and solving we get

$$
P=W\left[\frac{\sin (\lambda-\theta)}{\cos (\theta+\alpha)}\right]
$$

(6) Minimum force for motion and its direction

Let the force P be applied at an angle α with the horizontal.
By resolving P in horizontal and vertical direction (as shown in figure) For vertical equilibrium

$$
\begin{align*}
& R+P \sin \alpha=m g \\
\therefore \quad & R=m g-P \sin \alpha \tag{i}
\end{align*}
$$

and for horizontal motion

$$
\begin{equation*}
P \cos \alpha \geq F \tag{ii}
\end{equation*}
$$

i.e. $P \cos \alpha \geq \mu R$

Substituting value of R from (i) in (ii)

$$
\begin{align*}
& P \cos \alpha \geq \mu(m g-P \sin \alpha) \\
& P \geq \frac{\mu m g}{\cos \alpha+\mu \sin \alpha} \tag{iii}
\end{align*}
$$

For the force P to be minimum ($\cos \alpha+\mu \sin \alpha$) must be maximum i.e.

$$
\frac{d}{d \alpha}[\cos \alpha+\mu \sin \alpha]=0 \Rightarrow-\sin \alpha+\mu \cos \alpha=0
$$

$\therefore \quad \tan \alpha=\mu$
or $\alpha=\tan ^{-1}(\mu)=$ angle of friction
i.e. For minimum value of P its angle from the horizontal should be equal to angle of friction

As $\tan \alpha=\mu$ so from the figure $\sin \alpha=\frac{\mu}{\sqrt{1+\mu^{2}}}$ and $\cos \alpha=\frac{1}{\sqrt{1+\mu^{2}}}$

By substituting these value in equation (iii)

$$
\begin{aligned}
& P \geq \frac{\mu m g}{\frac{1}{\sqrt{1+\mu^{2}}}+\frac{\mu^{2}}{\sqrt{1+\mu^{2}}}} \geq \frac{\mu m g}{\sqrt{1+\mu^{2}}} \\
\therefore \quad & P_{\min }=\frac{\mu m g}{\sqrt{1+\mu^{2}}}
\end{aligned}
$$

