Motion of an Insect in the Rough Bowl.

The insect crawl up the bowl up to a certain height h only till the component of its weight along the bowl is balanced by limiting frictional force.
Let $m=$ mass of the insect, $r=$ radius of the bowl, $\mu=$ coefficient of friction for limiting condition at point A

$$
\begin{equation*}
R=m g \cos \theta \quad \ldots \ldots . \text { (i) and } \quad F_{l}=m g \sin \theta \tag{ii}
\end{equation*}
$$

Dividing (ii) by (i)

$$
\begin{array}{r}
\tan \theta=\frac{F_{l}}{R}=\mu\left[\operatorname{As} F_{l}=\mu R\right] \\
\therefore \frac{\sqrt{r^{2}-y^{2}}}{y}=\mu \text { or } y=\frac{r}{\sqrt{1+\mu^{2}}}
\end{array}
$$

So $\quad h=r-y=r\left[1-\frac{1}{\sqrt{1+\mu^{2}}}\right], \therefore h=r\left[1-\frac{1}{\sqrt{1+\mu^{2}}}\right]$

