Motion with Variable Acceleration.

(i) If acceleration is a function of time

$$
a=f(t) \quad \text { Then } v=u+\int_{0}^{t} f(t) d t \text { and } s=u t+\int\left(\int f(t) d t\right) d t
$$

(ii) If acceleration is a function of distance

$$
a=f(x) \quad \text { Then } v^{2}=u^{2}+2 \int_{x_{0}}^{x} f(x) d x
$$

(iii) If acceleration is a function of velocity

$$
\mathrm{a}=\mathrm{f}(\mathrm{v}) \quad \text { Then } t=\int_{u}^{v} \frac{d v}{f(v)} \text { and } x=x_{0}+\int_{u}^{v} \frac{v d v}{f(v)}
$$

