Position.

Any object is situated at point O and three observers from three different places are looking for same object, then all three observers will have different observations about the position of point O and no one will be wrong. Because they are observing the object from their different positions.
Observer ' A ' says: Point O is 3 m away in west direction. Observer ' B ' says: Point O is 4 m away in south direction. Observer ' C ' says: Point O is 5 m away in east direction.
Therefore position of any point is completely expressed by two factors: Its distance from the observer and its direction with respect to observer.

That is why position is characterized by a vector known as position vector.
Let point P is in a xy plane and its coordinates are (x, y). Then position vector (\vec{r}) of point will be $x \hat{i}+y \hat{j}$ and if the point P is in a space and its coordinates are $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ then position vector can be expressed as $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.

