Velocity Time Graph.

The graph is plotted by taking time t along x-axis and velocity of the particle on y-axis.

Distance and displacement: The area covered between the velocity time graph and time axis gives the displacement and distance travelled by the body for a given time interval.

+v

Then Total distance = $|A_1| + |A_2| + |A_3|$

= Addition of modulus of different area. i.e. $s = \int |v| dt$

Total displacement = $A_1 + A_2 + A_3$

= Addition of different area considering their sign. i.e. $r = \int v dt$

Here A_1 and A_2 are area of triangle 1 and 2 respectively and A_3 is the area of trapezium .

Acceleration: Let AB is a velocity-time graph for any moving particle

As Acceleration =
$$\frac{\text{Change in velocity}}{\text{Time taken}} = \frac{v_2 - v_1}{t_2 - t_1}$$
 ...(i)
From triangle ABC, $\tan \theta = \frac{BC}{AC} = \frac{AD}{AC} = \frac{v_2 - v_1}{t_2 - t_1}$ (ii)

3

By comparing (i) and (ii)

Acceleration (a) = $\tan \theta$

It is clear that slope of velocity-time graph represents the acceleration of the particle.

Various velocity - time graphs and their interpretation

