Overturning of Vehicle.

When a car moves in a circular path with speed more than maximum speed then it overturns and it's inner wheel leaves the ground first
Weight of the car $=m g$
Speed of the car $=v$
Radius of the circular path $=r$
Distance between the center of wheels of the car $=2 a$
Height of the center of gravity (G) of the car from the road level $=h$
Reaction on the inner wheel of the car by the ground $=R_{1}$

Reaction on the outer wheel of the car by the ground $=R_{2}$
When a car move in a circular path, horizontal force F provides the required centripetal force

$$
\begin{equation*}
\text { i.e., } F=\frac{m v^{2}}{R} \tag{i}
\end{equation*}
$$

For rotational equilibrium, by taking the moment of forces R_{1}, R_{2} and F about G

$$
\begin{equation*}
F h+R_{1} a=R_{2} a \tag{ii}
\end{equation*}
$$

As there is no vertical motion so $R_{1}+R_{2}=m g$
By solving (i), (ii) and (iii)

$$
\begin{equation*}
R_{1}=\frac{1}{2} M\left[g-\frac{v^{2} h}{r a}\right] \tag{iv}
\end{equation*}
$$

and $\quad R_{2}=\frac{1}{2} M\left[g+\frac{v^{2} h}{r a}\right]$
It is clear from equation (iv) that if v increases value of R_{1} decreases and for $R_{1}=0$

$$
\frac{v^{2} h}{r a}=g \quad \text { or } \quad v=\sqrt{\frac{g r a}{h}}
$$

i.e. the maximum speed of a car without overturning on a flat road is given by $v=\sqrt{\frac{g r a}{h}}$

