Overturning of Vehicle.

When a car moves in a circular path with speed more than maximum speed then it overturns and it's inner wheel leaves the ground first

Weight of the car = mq

Speed of the car = v

Radius of the circular path = r

Distance between the center of wheels of the car = 2a

Height of the center of gravity (G) of the car from the road level = h

Reaction on the inner wheel of the car by the ground = R_1

Reaction on the outer wheel of the car by the ground = R_2

When a car move in a circular path, horizontal force F provides the required centripetal force

i.e.,
$$F = \frac{mv^2}{R}$$
(i)

For rotational equilibrium, by taking the moment of forces R_1 , R_2 and F about G

$$Fh + R_1 a = R_2 a$$
(ii)

As there is no vertical motion so $R_1 + R_2 = mg$(iii) By solving (i), (ii) and (iii)

ind
$$R_2 = \frac{1}{2}M\left[g + \frac{v^2h}{ra}\right]$$
(v)

а

It is clear from equation (iv) that if ν increases value of R_1 decreases and for $R_1 = 0$

$$\frac{v^2h}{ra} = g$$
 or $v = \sqrt{\frac{gra}{h}}$

i.e. the maximum speed of a car without overturning on a flat road is given by $v = \sqrt{\frac{gra}{h}}$

