Non-Uniform Circular Motion.

If the speed of the particle in a horizontal circular motion changes with respect to time, then its motion is said to be non-uniform circular motion.
Consider a particle describing a circular path of radius r with center at O. Let at an instant the particle be at P and \vec{v} be its linear velocity and $\vec{\omega}$ be its angular velocity.
Then, $\vec{v}=\vec{\omega} \times \vec{r}$
Differentiating both sides of w.r.t. time t we have

$$
\begin{align*}
& \frac{\overrightarrow{d v}}{d t}=\frac{\overrightarrow{d \omega}}{d t} \times \vec{r}+\vec{\omega} \times \frac{\overrightarrow{d r}}{d t} \tag{ii}\\
& \vec{a}=\vec{\alpha} \times \vec{r}+\vec{\omega} \times \vec{v} \\
& \vec{a}=\vec{a}_{t}+\vec{a}_{c}
\end{align*}
$$

Here, $\frac{\overrightarrow{d v}}{d t}=\vec{a}, \quad$ (Resultant acceleration) $\frac{\overrightarrow{d \omega}}{d t}=\vec{\alpha} \quad$ (Angular acceleration)
.....(iii) $\frac{\overrightarrow{d r}}{d t}=\vec{v} \quad$ (Linear velocity)

Thus the resultant acceleration of the particle at P has two component accelerations

(1) Tangential acceleration: $\overrightarrow{a_{t}}=\vec{\alpha} \times \vec{r}$

It acts along the tangent to the circular path at P in the plane of circular path.
According to right hand rule since $\vec{\alpha}$ and \vec{r} are perpendicular to each other, therefore, the magnitude of tangential acceleration is given by

$$
\left|\vec{a}_{t}\right|=|\vec{\alpha} \times \vec{r}|=\alpha r \sin 90^{\circ}=\alpha r .
$$

(2) Centripetal (Radial) acceleration: $\overrightarrow{a_{c}}=\vec{\omega} \times \vec{v}$

It is also called centripetal acceleration of the particle at P.
It acts along the radius of the particle at P.
According to right hand rule since $\vec{\omega}$ and \vec{v} are perpendicular to each other, therefore, the magnitude of centripetal acceleration is given by

$$
\left|\vec{a}_{c}\right|=|\vec{\omega} \times \vec{v}|=\omega v \sin 90^{\circ}=\omega v=\omega(\omega r)=\omega^{2} r=v^{2} / r
$$

(3) Tangential and centripetal acceleration in different motions

Centripetal acceleration	Tangential acceleration	Net acceleration	Type of motion
$a_{c}=0$	$a_{t}=0$	$a=0$	Uniform translatory motion
$a_{c}=0$	$a_{\neq} \neq 0$	$a=a_{t}$	Accelerated translatory motion
$a_{c} \neq 0$	$a_{t}=0$	$a=a_{c}$	Uniform circular motion
$a_{c} \neq 0$	$a_{\neq 0} 0$	$a=\sqrt{a_{c}^{2}+a_{t}^{2}}$	Non-uniform circular motion

Note: Here a_{t} governs the magnitude of \vec{v} while \vec{a}_{c} its direction of motion.
(4) Force:In non-uniform circular motion the particle simultaneously possesses two forces

Centripetal force: $F_{c}=m a_{c}=\frac{m v^{2}}{r}=m r \omega^{2}$
Tangential force: $F_{t}=m a_{t}$
Net force: $F_{\text {net }}=m a=m \sqrt{a_{c}^{2}+a_{t}^{2}}$

Note: In non-uniform circular motion work done by centripetal force will be zero since $\vec{F}_{c} \perp \vec{v}$
a. In non-uniform circular motion work done by tangential of force will not be zero since $F_{\neq 0} 0$
b. Rate of work done by net force in non-uniform circular = rate of work done by tangential force
i.e. $P=\frac{d W}{d t}=\vec{F}_{t} \cdot \vec{v}$

