Equations of Circular Motion.

For accelerated motion	For retarded motion
$\omega_{2}=\omega_{1}+\alpha t$	$\omega_{2}=\omega_{1}-\alpha t$
$\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$	$\theta=\omega_{1} t-\frac{1}{2} \alpha t^{2}$
$\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta$	$\omega_{2}^{2}=\omega_{1}^{2}-2 \alpha \theta$
$\theta_{n}=\omega_{1}+\frac{\alpha}{2}(2 n-1)$	$\theta_{n}=\omega_{1}-\frac{\alpha}{2}(2 n-1)$

Where
$\omega_{1}=$ Initial angular velocity of particle
ω_{2} = Final angular velocity of particle
$\alpha=$ Angular acceleration of particle
$\theta=$ Angle covered by the particle in time t
$\theta_{n}=$ Angle covered by the particle in $n^{\text {th }}$ second

