Equations of Circular Motion.

For accelerated motion	For retarded motion
$\omega_2 = \omega_1 + \alpha t$	$\omega_2 = \omega_1 - \alpha t$
$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$\theta = \omega_1 t - \frac{1}{2} \alpha t^2$
$\omega_2^2 = \omega_1^2 + 2\alpha \theta$	$\omega_2^2 = \omega_1^2 - 2\alpha\theta$
$\theta_n = \omega_1 + \frac{\alpha}{2}(2n-1)$	$\theta_n = \omega_1 - \frac{\alpha}{2}(2n - 1)$

Where

 ω_1 = Initial angular velocity of particle

 ω_2 = Final angular velocity of particle

 α = Angular acceleration of particle

 θ = Angle covered by the particle in time t

 θ_n = Angle covered by the particle in n^{th} second