This is the example of uniform circular motion in horizontal plane.
A bob of mass m attached to a light and in-extensible string rotates in a horizontal circle of radius r with constant angular speed ω about the vertical. The string makes angle θ with vertical and appears tracing the surface of a cone. So this arrangement is called conical pendulum.
The force acting on the bob are tension and weight of the bob.
From the figure $T \sin \theta=\frac{m v^{2}}{r}$
and $\quad T \cos \theta=m g$

(1) Tension in the string: $T=m g \sqrt{1+\left(\frac{v^{2}}{r g}\right)^{2}}$

$$
T=\frac{m g}{\cos \theta}=\frac{m g l}{\sqrt{l^{2}-r^{2}}} \quad\left[\text { As } \cos \theta=\frac{h}{l}=\frac{\sqrt{l^{2}-r^{2}}}{l}\right]
$$

(2) Angle of string from the vertical: $\tan \theta=\frac{v^{2}}{r g}$

(3) Linear velocity of the bob: $v=\sqrt{g r \tan \theta}$
(4) Angular velocity of the bob: $\omega=\sqrt{\frac{g}{r} \tan \theta}=\sqrt{\frac{g}{h}}=\sqrt{\frac{g}{l \cos \theta}}$
(5) Time period of revolution: $T_{P}=2 \pi \sqrt{\frac{l \cos \theta}{g}}=2 \pi \sqrt{\frac{h}{g}}=2 \pi \sqrt{\frac{l^{2}-r^{2}}{g}}=2 \pi \sqrt{\frac{r}{g \tan \theta}}$

