Let a particle be projected up with a speed u from an inclined plane which makes an angle α with the horizontal velocity of projection makes an angle θ with the inclined plane.
We have taken reference x-axis in the direction of plane.
Hence the component of initial velocity parallel and perpendicular to the plane are equal to $u \cos \theta$ and $u \sin \theta$ respectively i.e. $u_{\|}=u \cos \theta$ and $u_{\perp}=u \sin \theta$.

The component of g along the plane is $g \sin \alpha$ and perpendicular to the plane is $g \cos \alpha$ as shown in the figure i.e. $a_{\|}=-g \sin \alpha$ and $a_{\perp}=g \cos \alpha$.
Therefore the particle decelerates at a rate of $g \sin \alpha$ as it moves
 from O to P.
(1) Time of flight: We know for oblique projectile motion $T=\frac{2 u \sin \theta}{g}$
or we can say $T=\frac{2 u_{\perp}}{a_{\perp}}$
\therefore Time of flight on an inclined plane $T=\frac{2 u \sin \theta}{g \cos \alpha}$
(2) Maximum height: We know for oblique projectile motion $H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
or we can say $\quad H=\frac{u_{\perp}^{2}}{2 a_{\perp}}$
\therefore Maximum height on an inclined plane $H=\frac{u^{2} \sin ^{2} \theta}{2 g \cos \alpha}$
(3) Horizontal range: For one dimensional motion $s=u t+\frac{1}{2} a t^{2}$

Horizontal range on an inclined plane $R=u_{\|} T+\frac{1}{2} a_{\|} T^{2}$

$$
\begin{aligned}
& R=u \cos \theta T-\frac{1}{2} g \sin \alpha T^{2} \\
& R=u \cos \theta\left(\frac{2 u \sin \theta}{g \cos \alpha}\right)-\frac{1}{2} g \sin \alpha\left(\frac{2 u \sin \theta}{g \cos \alpha}\right)^{2}
\end{aligned}
$$

By solving $R=\frac{2 u^{2}}{g} \frac{\sin \theta \cos (\theta+\alpha)}{\cos ^{2} \alpha}$
(i) Maximum range occurs when $\theta=\frac{\pi}{4}-\frac{\alpha}{2}$
(ii) The maximum range along the inclined plane when the projectile is thrown upwards is given by

Testprep Kart

Knowledge... Everywhere

$$
R_{\max }=\frac{u^{2}}{g(1+\sin \alpha)}
$$

(iii) The maximum range along the inclined plane when the projectile is thrown downwards is given by

$$
R_{\max }=\frac{u^{2}}{g(1-\sin \alpha)}
$$

