## Projectile Motion on an Inclined Plane.

Let a particle be projected up with a speed u from an inclined plane which makes an angle  $\alpha$  with the horizontal velocity of projection makes an angle  $\theta$  with the inclined plane.

We have taken reference x-axis in the direction of plane.

Hence the component of initial velocity parallel and perpendicular to the plane are equal to  $u \cos \theta$ and  $u \sin \theta$  respectively i.e.  $u_{\parallel} = u \cos \theta$  and  $u_{\perp} = u \sin \theta$ .

The component of g along the plane is  $g \sin \alpha$  and perpendicular to the plane is  $g \cos \alpha$  as shown in the figure i.e.  $a_{\parallel} = -g \sin \alpha$ 

and 
$$a_{\perp} = g \cos \alpha$$
.

Therefore the particle decelerates at a rate of  $g \sin \alpha$  as it moves from O to P.

(1) **Time of flight:** We know for oblique projectile motion  $T = \frac{2u\sin\theta}{\sigma}$ 

or we can say  $T = \frac{2u_{\perp}}{a_{\perp}}$ 

 $\therefore$  Time of flight on an inclined plane  $T = \frac{2u\sin\theta}{g\cos\alpha}$ 

(2) **Maximum height:** We know for oblique projectile motion  $H = \frac{u^2 \sin^2 \theta}{2g}$ 

or we can say  $H = \frac{u_{\perp}^2}{2a_{\perp}}$ 

:. Maximum height on an inclined plane  $H = \frac{u^2 \sin^2 \theta}{2g \cos \alpha}$ 

(3) **Horizontal range:** For one dimensional motion  $s = ut + \frac{1}{2}at^2$ 

Horizontal range on an inclined plane  $R = u_{\parallel} T + \frac{1}{2}a_{\parallel} T^2$ 

$$R = u\cos\theta T - \frac{1}{2}g\sin\alpha T^{2}$$
$$R = u\cos\theta \left(\frac{2u\sin\theta}{g\cos\alpha}\right) - \frac{1}{2}g\sin\alpha \left(\frac{2u\sin\theta}{g\cos\alpha}\right)^{2}$$
$$\log R = \frac{2u^{2}}{2}\sin\theta\cos(\theta + \alpha)$$

By solving  $R = \frac{2u^2}{g} \frac{\sin\theta\cos(\theta + \alpha)}{\cos^2\alpha}$ 

(i) Maximum range occurs when  $\theta = \frac{\pi}{4} - \frac{\alpha}{2}$ 

(ii) The maximum range along the inclined plane when the projectile is thrown upwards is given by





$$R_{\max} = \frac{u^2}{g(1 + \sin \alpha)}$$

(iii) The maximum range along the inclined plane when the projectile is thrown downwards is given by

$$R_{\max} = \frac{u^2}{g(1 - \sin \alpha)}$$













1