Stopping of Vehicle by Retarding Force.

If a vehicle moves with some initial velocity and due to some retarding force it stops after covering some distance after some time.
(1) Stopping distance: Let $m=$ Mass of vehicle, $v=$ Velocity, $P=$ Momentum, E = Kinetic energy

$$
\mathrm{F}=\text { Stopping force }, \quad \mathrm{x}=\text { Stopping distance, } \mathrm{t}=\text { Stopping time }
$$

Then, in this process stopping force does work on the vehicle and destroy the motion.
By the work- energy theorem

$$
W=\Delta K=\frac{1}{2} m v^{2}
$$

\Rightarrow Stopping force (F) \times Distance $(\mathrm{x})=$ Kinetic energy (E)
\Rightarrow Stopping distance $(x)=\frac{\text { Kineticenergy }(E)}{\text { Stoppingforce }(F)}$

$$
\begin{equation*}
\Rightarrow \quad x=\frac{m v^{2}}{2 F} \tag{i}
\end{equation*}
$$

(2) Stopping time: By the impulse-momentum theorem

$$
\begin{align*}
& \quad F \times t=\Delta P \Rightarrow F \times t=P \\
& \therefore \quad t=\frac{P}{F} \\
& \text { or } \quad t=\frac{m v}{F} \quad \ldots . .(\text { (ii }) \tag{ii}
\end{align*}
$$

(3) Comparison of stopping distance and time for two vehicles: Two vehicles of masses m_{1} and m_{2} are moving with velocities v_{1} and v_{2} respectively. When they are stopped by the same retarding force (F).
The ratio of their stopping distances $\frac{x_{1}}{x_{2}}=\frac{E_{1}}{E_{2}}=\frac{m_{1} v_{1}^{2}}{m_{2} v_{2}^{2}}$
and the ratio of their stopping time $\frac{t_{1}}{t_{2}}=\frac{P_{1}}{P_{2}}=\frac{m_{1} v_{1}}{m_{2} v_{2}}$

If vehicles possess same velocities

$$
\mathrm{v}_{1}=\mathrm{v}_{2} \quad \frac{x_{1}}{x_{2}}=\frac{m_{1}}{m_{2}} \quad \frac{t_{1}}{t_{2}}=\frac{m_{1}}{m_{2}}
$$

If vehicle possess same kinetic momentum

$$
\mathrm{P}_{1}=\mathrm{P}_{2} \quad \frac{x_{1}}{x_{2}}=\frac{E_{1}}{E_{2}}=\left(\frac{P_{1}^{2}}{2 m_{1}}\right)\left(\frac{2 m_{2}}{P_{2}^{2}}\right)=\frac{m_{2}}{m_{1}} \quad \frac{t_{1}}{t_{2}}=\frac{P_{1}}{P_{2}}=1
$$

If vehicle possess same kinetic energy

$$
\mathrm{E}_{1}=\mathrm{E}_{2} \quad \frac{x_{1}}{x_{2}}=\frac{E_{1}}{E_{2}}=1
$$

$$
\frac{t_{1}}{t_{2}}=\frac{P_{1}}{P_{2}}=\frac{\sqrt{2 m_{1} E_{1}}}{\sqrt{2 m_{2} E_{2}}}=\sqrt{\frac{m_{1}}{m_{2}}}
$$

Note: If vehicle is stopped by friction then
Stopping distance $x=\frac{\frac{1}{2} m v^{2}}{F}=\frac{\frac{1}{2} m v^{2}}{m a}=\frac{v^{2}}{2 \mu g} \quad[$ As $a=\mu g$]
Stopping time $t=\frac{m v}{F}=\frac{m v}{m \mu g}=\frac{v}{\mu g}$

