Work Done in Pulling the Chain against Gravity.

A chain of length L and mass M is held on a frictionless table with $(1 / n)^{\text {th }}$ of its length hanging over the edge.

Let $m=\frac{M}{L}=$ mass per unit length of the chain and y is the length of the chain hanging over the edge. So the mass of the chain of length y will be ym and the force acting on it due to gravity will be mgy.
The work done in pulling the dy length of the chain on the table.
$d W=F(-d y) \quad$ [As y is decreasing]

i.e. $\quad d W=m g y(-d y)$

So the work done in pulling the hanging portion on the table.
$W=-\int_{L / n}^{0} m g y d y=m g\left[\frac{y^{2}}{2}\right]_{L / n}^{0}=\frac{m g L^{2}}{2 n^{2}}$
$\therefore \quad W=\frac{M g L}{2 n^{2}} \quad[$ As $m=M / L]$

Alternative method:

If point mass m is pulled through a height h then work done $W=m g h$
Similarly for a chain we can consider its centre of mass at the middle point of the hanging part i.e. at a height of $L /(2 n)$ from the lower end and mass of the hanging part of chain $=\frac{M}{n}$ So work done to raise the centre of mass of the chain on the table is given by
$W=\frac{M}{n} \times g \times \frac{L}{2 n}$ [As W $=\mathrm{mgh}$]
or
$W=\frac{M g L}{2 n^{2}}$

