Position and Velocity of an Automobile w.r.t Time.

An automobile of mass m accelerates, starting from rest, while the engine supplies constant power P, its position and velocity changes w.r.t time.
(1) Velocity: As Fv $=P=$ constant
i.e. $\quad m \frac{d v}{d t} v=P \quad\left[\right.$ As $\left.F=\frac{m d v}{d t}\right]$
or $\quad \int v d v=\int \frac{P}{m} d t$
By integrating both sides we get $\frac{v^{2}}{2}=\frac{P}{m} t+C_{1}$
As initially the body is at rest i.e. $v=0$ at $t=0$, so $C_{1}=0$
$\therefore \quad v=\left(\frac{2 P t}{m}\right)^{1 / 2}$
(2) Position: From the above expression $v=\left(\frac{2 P t}{m}\right)^{1 / 2}$
or

$$
\frac{d s}{d t}=\left(\frac{2 P t}{m}\right)^{1 / 2} \quad\left[\mathrm{~A} s v=\frac{d s}{d t}\right]
$$

i.e. $\quad \int d s=\int\left(\frac{2 P t}{m}\right)^{1 / 2} d t$

By integrating both sides we get $s=\left(\frac{2 P}{m}\right)^{1 / 2} \cdot \frac{2}{3} t^{3 / 2}+C_{2}$

Now as at $t=0, s=0$, so $C_{2}=0$

$$
\therefore \quad s=\left(\frac{8 P}{9 m}\right)^{1 / 2} t^{3 / 2}
$$

