Perfectly Elastic Head-On Collision:

Let two bodies of masses m_1 and m_2 moving with initial velocities u_1 and u_2 in the same direction and they collide such that after collision their final velocities are v_1 and v_2 respectively.

According to law of conservation of momentum

 $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$...(i)

 $\Rightarrow m_1(u_1 - v_1) = m_2(v_2 - u_2)$...(ii)

According to law of conservation of kinetic energy \

 $[\frac{1}{2}{m}_{1}]u_{1}^{2}+\frac{1}{2}{m}_{2}]u_{2}^{2}=\frac{1}{2}{m}_{1}}v_{1}^{2}+\frac{1}{2}{m}_{2}]u_{2}^{2}=\frac{1}{2}{m}_{1}^{2}+\frac{1}{2}{m}_{1$

 $\Rightarrow m_1(u_{21}-v_{21})=m_2(v_{22}-u_{22}) \qquad \dots (iv)$ Dividing equation (iv) by equation (ii) $v_1+u_1=v_2+u_2$ $\Rightarrow u_1-u_2=v_2-v_1 \qquad \dots (vi)$

Relative velocity of separation is equal to relative velocity of approach.

Note :

• The ratio of relative velocity of separation and relative velocity of approach is defined as coefficient of restitution.

...(v)

$$e = v_2 - v_1 u_1 - u_2$$

or

$$v_2 - v_1 = e(u_1 - u_2)$$

For perfectly elastic collision, e=1,

... v2-v1=u1-u2

[As shown in eq. (vi)] For perfectly inelastic collision, e=0 ... $v_2 {-} v_1 {=} 0$

or v2=v1

It means that two body stick together and move with same velocity.

For inelastic collision,

- 0 < e <1
- :. $v_2 v_1 = e(u_1 u_2)$

In short we can say that e is the degree of elasticity of collision and it is dimensionless quantity.

Further from equation (v) we get

 $v_2 = v_1 + u_1 - u_2$

Substituting this value of V2 in equation (i) and rearranging, we get

 $v_1 = (m_1 - m_2m_1 + m_2)u_1 + 2m_2u_2m_1 + m_2$...(vii)

Similarly we get,

$$v_2 = (m_2 - m_1 m_1 + m_2)u_2 + 2m_1 u_1 m_1 + m_2$$
 ...(viii)

(1) Special cases of head on elastic collision:

(i) If projectile and target are of same mass i.e.

 $m_1 = m_2$

Since

 $v_1 = (m_1 - m_2m_1 + m_2)u_1 + 2m_2m_1 + m_2u_2$

and

$$v_2 = (m_2 - m_1 m_1 + m_2)u_2 + 2m_1 u_1 m_1 + m_2$$

Substituting $m_1 = m_2$, we get

and

U2=U1

It means when two bodies of equal masses undergo head on elastic collision, their velocities get interchanged.

Example : Collision of two billiard balls

(ii) If massive projectile collides with a light target i.e.

 $m_1 \!>\!> \!m_2$

Since

 $v_1 = (m_1 - m_2m_1 + m_2)u_1 + 2m_2u_2m_1 + m_2$

and

 $v_2 = (m_2 - m_1m_1 + m_2)u_2 + 2m_1u_1m_1 + m_2$

Substituting $m_2=0$, we get

U1=U1

and

 $v_2 = 2u_1 - u_2$

Example: Collision of a truck with a cyclist.

(iii) If light projectile collides with a very heavy target i.e.

 $m_1 < < m_2$

Since

$$v_1 = (m_1 - m_2m_1 + m_2)u_1 + 2m_2u_2m_1 + m_2$$

and

 $v_2 = (m_2 - m_1m_1 + m_2)u_2 + 2m_1u_1m_1 + m_2$

Substituting

$$m_1 = 0$$
, we get

$$U_1 = -U_1 + 2U_2$$
 and $U_2 = U_2$

Example: Collision of a ball with a massive wall.

(2) Kinetic energy transfer during head on elastic collision

Kinetic energy of projectile before collision

$$K_i = 12m_1u_{21}$$

Kinetic energy of projectile after collision

 $K_{f} = 12m_1v_{21}$

Kinetic energy transferred from projectile to target

 ΔK = decrease in kinetic energy in projectile

 $\Delta K = 12m_1u_{21} - 12m_1v_{21}$

 $=12m_1(u_{21}-v_{21})$

Fractional decrease in kinetic energy

$$\Delta KK = 12m_1(u_{21} - v_{21})_{12}m_1u_{21}$$

$$=1-(v_1u_1)_2$$
 ...(i)

We can substitute the value of v_1 from the equation

$$v_1 = (m_1 - m_2m_1 + m_2)u_1 + 2m_2u_2m_1 + m_2$$

If the target is at rest i.e.

v2=0

then

$$v_1 = (m_1 - m_2 m_1 + m_2)u_1$$

From equation (i)

$$\Delta KK = 1 - (m_1 - m_2 m_1 + m_2)_2$$
 ...(ii)

or

$$\Delta KK = 4m_1m_2(m_1 + m_2)_2$$
 ...(iii)

or

$$\Delta KK = 4m_1m_2(m_1 - m_2)_2 + 4m_1m_2$$
 ...(iv)

Note :

- Greater the difference in masses, lesser will be transfer of kinetic energy and vice versa
- Transfer of kinetic energy will be maximum when the difference in masses is minimum

i.e.

 $m_1 - m_2 = 0$

or

 $m_1 = m_2$

then

$\Delta KK \!=\! 1 \!=\! 100$

So the transfer of kinetic energy in head on elastic collision (when target is at rest) is maximum when the masses of particles are equal i.e. mass ratio is 1 and the transfer of kinetic energy is 100%.

• If

$$m_2 = nm_1$$

then from equation (iii) we get

$$\Delta KK = 4n(1+n)_2$$

• Kinetic energy retained by the projectile

 (ΔKK) Retained = 1 - kinetic energy transferred by projectile

$$\Rightarrow$$
 (ΔKK)Retained = 1 - [1 - (m_1 - m_2m_1 + m_2)_2] = (m_1 - m_2m_1 + m_2)_2

(3) Velocity, momentum and kinetic energy of stationary target after head on elastic collision

(i) Velocity of target: We know

$$v_2 = (m_2 - m_1 m_1 + m_2)u_2 + 2m_1 u_1 m_1 + m_2$$

 \Rightarrow v₂=2m₁u₁m₁+m₂

$$=2u_11+m_2/m_1$$

```
As \upsilon_2=0 and Assuming m_2m_1=n
```

: $v_2 = 2u_1 1 + n$

(ii) Momentum of target :

 $P_2 = m_2 v_2 = 2nm_1 u_1 1 + n$

[As $m_2 = m_1n$ and $v_2 = 2u_11 + n$]

: $P_2 = 2m_1u_11 + (1/n)$

(iii) Kinetic energy of target :

 $K_2 = 12m_2v_{22}$

[As K1=12m1u21]

(iv) Relation between masses for maximum velocity, momentum and kinetic energy

Velocity		For U2	Target should be very light.
	v2=2u11+n	to be maximum n must be minimum i.e.	
		n=m2m1→0	
		m2< <m1< td=""><td></td></m1<>	
Momentum	P2=2m1u1(1+1/n)	For P2	Target should be massive.
		to be maximum, (1/n) must be minimum or n must be maximum. i.e.	
		$n=m_2m_1 \rightarrow \infty$	
		.:.	
		m2>>m1	
Kinetic energy	$K_2 = 4K_1n(1-n)_2 + 4n$	For K2	Target and projectile should be of equal mass.

