Perfectly Elastic Oblique Collision.

Let two bodies moving as shown in figure.
By law of conservation of momentum
Along x-axis, $m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1} \cos \theta+m_{2} v_{2} \cos \phi$
Along y-axis, $0=m_{1} v_{1} \sin \theta-m_{2} v_{2} \sin \phi$
By law of conservation of kinetic energy
$\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$

In case of oblique collision it becomes difficult to solve problem when some experimental data are provided as in these situations more unknown variables are involved than equations formed.

Special condition: If $m_{1}=m_{2}$ and $u_{2}=0$ substituting these values in equation (i), (ii) and (iii) we get
$u_{1}=v_{1} \cos \theta+v_{2} \cos \phi$
$0=v_{1} \sin \theta-v_{2} \sin \phi$
and $u_{1}^{2}=v_{1}^{2}+v_{2}^{2}$
Squaring (iv) and (v) and adding we get
$u_{1}^{2}=v_{1}^{2}+v_{2}^{2}+2 v_{1} u_{2} \cos (\theta+\phi)$
Using (vi) and (vii) we get $\cos (\theta+\phi)=0$
$\therefore \quad \theta+\phi=\pi / 2$
i.e. after perfectly elastic oblique collision of two bodies of equal masses (if the second body is at rest), the scattering angle $\theta+\phi$ would be 90°.

