Rebounding of Ball after Collision with Ground.

If a ball is dropped from a height h on a horizontal floor, then it strikes with the floor with a speed.
$v_{0}=\sqrt{2 g h_{0}} \quad\left[\right.$ From $\left.v^{2}=u^{2}+2 g h\right]$
and it rebounds from the floor with a speed
$v_{1}=e v_{0}=e \sqrt{2 g h_{0}} \quad\left[\right.$ As $\left.e=\frac{\text { velocity after collision }}{\text { velocity before collision }}\right]$

(1) First height of rebound: $h_{1}=\frac{v_{1}^{2}}{2 g}=e^{2} h_{0}$
$\therefore \quad h_{1}=e^{2} h_{0}$
(2) Height of the ball after $\boldsymbol{n}^{\text {th }}$ rebound: Obviously, the velocity of ball after $n^{\text {th }}$ rebound will be
$v_{n}=e^{n} v_{0}$
Therefore the height after $\mathrm{n}^{\text {th }}$ rebound will be $h_{n}=\frac{v_{n}^{2}}{2 g}=e^{2 n} h_{0}$
$\therefore \quad h_{n}=e^{2 n} h_{0}$
(3) Total distance travelled by the ball before it stops bouncing

$$
\begin{aligned}
& H=h_{0}+2 h_{1}+2 h_{2}+2 h_{3}+\ldots \ldots=h_{0}+2 e^{2} h_{0}+2 e^{4} h_{0}+2 e^{6} h_{0}+\ldots . . \\
& H=h_{0}\left[1+2 e^{2}\left(1+e^{2}+e^{4}+e^{6} \ldots .\right)\right]=h_{0}\left[1+2 e^{2}\left(\frac{1}{1-e^{2}}\right)\right] \\
& {\left[\text { As } 1+e^{2}+e^{4}+\ldots .=\frac{1}{1-e^{2}}\right]} \\
& \therefore \quad H=h_{0}\left[\frac{1+e^{2}}{1-e^{2}}\right]
\end{aligned}
$$

(4) Total time taken by the ball to stop bouncing

$$
\begin{aligned}
& T=t_{0}+2 t_{1}+2 t_{2}+2 t_{3}+\ldots .=\sqrt{\frac{2 h_{0}}{g}}+2 \sqrt{\frac{2 h_{1}}{g}}+2 \sqrt{\frac{2 h_{2}}{g}}+\ldots . \\
& =\sqrt{\frac{2 h_{0}}{g}}\left[1+2 e+2 e^{2}+\ldots \ldots\right] \quad \quad \quad\left[\text { As } h_{1}=e^{2} h_{0} ; h_{2}=e^{4} h_{0}\right] \\
& =\sqrt{\frac{2 h_{0}}{g}}\left[1+2 e\left(1+e+e^{2}+e^{3}+\ldots \ldots .\right)\right]=\sqrt{\frac{2 h_{0}}{g}}\left[1+2 e\left(\frac{1}{1-e}\right)\right]=\sqrt{\frac{2 h_{0}}{g}}\left(\frac{1+e}{1-e}\right)
\end{aligned}
$$

$$
\therefore \quad T=\left(\frac{1+e}{1-e}\right) \sqrt{\frac{2 h_{0}}{g}}
$$

