Collision between Bullet and Vertically Suspended Block.

A bullet of mass m is fired horizontally with velocity u in block of mass M suspended by vertical thread.

After the collision bullet gets embedded in block. Let the combined system raised upto height h and the string makes an angle θ with the vertical.

(1) Velocity of system

Let v be the velocity of the system (block + bullet) just after the collision.
Momentum bullet + Momentum block $=$ Momentum bullet and block system $m u+0=(m+M) v$

$$
\begin{equation*}
\therefore \quad v=\frac{m u}{(m+M)} \tag{i}
\end{equation*}
$$

(2) Velocity of bullet: Due to energy which remains in the bullet block system, just after the collision, the system (bullet + block) rises upto height h.
By the conservation of mechanical energy $\frac{1}{2}(m+M) v^{2}=(m+M) g h \Rightarrow v=\sqrt{2 g h}$
Now substituting this value in the equation (i) we get $\sqrt{2 g h}=\frac{m u}{m+M}$

$$
\therefore \quad u=\left[\frac{(m+M) \sqrt{2 g h}}{m}\right]
$$

(3) Loss in kinetic energy: We know the formula for loss of kinetic energy in perfectly inelastic collision

$$
\Delta K=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(u_{1}+u_{2}\right)^{2}
$$

$$
\therefore \quad \Delta K=\frac{1}{2} \frac{m M}{m+M} u^{2} \quad\left[\text { As } u_{1}=u, u_{2}=0, m_{1}=m \text { and } m_{2}=M\right]
$$

(4) Angle of string from the vertical

From the expression of velocity of bullet $u=\left[\frac{(m+M) \sqrt{2 g h}}{m}\right]$ we can get $h=\frac{u^{2}}{2 g}\left(\frac{m}{m+M}\right)^{2}$
From the figure $\cos \theta=\frac{L-h}{L}=1-\frac{h}{L}=1-\frac{u^{2}}{2 g L}\left(\frac{m}{m+M}\right)^{2}$
or $\quad \theta=\cos ^{-1}\left[1-\frac{1}{2 g L}\left(\frac{m u}{m+M}\right)^{2}\right]$

