Dimension and Units of Work.

Dimension :	As work = Force × displacement	
	$[W] = [Force] \times [Displacement]$	
	$= [MLT^{-2}] \times [L] = [ML^2T^{-2}]$	

Units : The units of work are of two types

Absolute units	Gravitational units
Joule [S.I.]: Work done is said to be one Joule, when 1 Newton force displaces the body through 1 meter in its own direction. From W = F.s	kg-m [S.I.]: 1 Kg-m of work is done when a force of 1kg-wt. displaces the body through 1m in its own direction. From W = F s
1 Joule = 1 Newton × 1 metre	1 kg-m = 1 kg-wt × 1 metre = 9.81 N × 1 metre = 9.81 Joule
Erg [C.G.S.] : Work done is said to be one erg when 1 dyne force displaces the body through 1 cm in its own direction. From W = F s $1 Erg = 1 Dyne \times 1 cm$	gm-cm [C.G.S.] : 1 gm-cm of work is done when a force of 1gm-wt displaces the body through 1cm in its own direction. From W = F s 1 gm-cm = 1gm-wt × 1cm. = 981 dyne ×
Relation between Joule and erg 1 Joule = $1 \text{ N} \times 1 \text{ m} = 10^5 \text{ dyne} \times 10^2 \text{ cm}$ = $10^7 \text{ dyne} \times \text{ cm} = 10^7 \text{ Erg}$	1cm = 981 erg