Dimension and Units of Work.

Dimension : As work $=$ Force \times displacement

$$
\begin{array}{ll}
\therefore \quad & {[\mathrm{W}]=[\text { Force }] \times[\text { Displacement }]} \\
& =\left[M L T^{-2}\right] \times[L]=\left[M L^{2} T^{-2}\right]
\end{array}
$$

Units: The units of work are of two types

\section*{| Absolute units | Gravitational units |
| :--- | :--- |}

Joule [S.I.]: Work done is said to be one Joule, when 1 Newton force displaces the body through 1 meter in its own direction.

$$
\begin{aligned}
\text { From } W & =\text { F.s } \\
1 \text { Joule } & =1 \text { Newton } \times 1 \text { metre }
\end{aligned}
$$

$\mathrm{kg}-\mathrm{m}$ [S.I.]: $1 \mathrm{Kg}-\mathrm{m}$ of work is done when a force of 1 kg -wt. displaces the body through 1 m in its own direction.

$$
\begin{aligned}
& \text { From } \quad W=F \mathrm{~s} \\
& \begin{aligned}
& 1 \mathrm{~kg}-\mathrm{m}=1 \mathrm{~kg}-\mathrm{wt} \times 1 \text { metre } \\
&=9.81 \mathrm{~N} \times 1 \text { metre }=9.81 \text { Joule }
\end{aligned}
\end{aligned}
$$

Erg [C.G.S.] : Work done is said to be one erg when 1 dyne force displaces the body through 1 cm in its own direction.

$$
\begin{aligned}
\text { From } \mathrm{W} & =\mathrm{Fs} \\
1 \mathrm{Erg} & =1 \mathrm{Dyne} \times 1 \mathrm{~cm}
\end{aligned}
$$

Relation between Joule and erg

1 Joule $=1 \mathrm{~N} \times 1 \mathrm{~m}=10^{5}$ dyne $\times 10^{2} \mathrm{~cm}$ $=10^{7}$ dyne $\times \mathrm{cm}=10^{7} \mathrm{Erg}$
$\mathrm{gm}-\mathrm{cm}$ [C.G.S.] : $1 \mathrm{gm}-\mathrm{cm}$ of work is done when a force of 1 gm -wt displaces the body through 1 cm in its own direction.

From $\mathrm{W}=\mathrm{Fs}$
$1 \mathrm{gm}-\mathrm{cm}=1 \mathrm{gm}-\mathrm{wt} \times 1 \mathrm{~cm} .=981$ dyne \times 1 cm

$$
=981 \mathrm{erg}
$$

