Energy.

The energy of a body is defined as its capacity for doing work.

(1) Since energy of a body is the total quantity of work done therefore it is a scalar quantity.

(2) Dimension: $[ML^2T^{-2}]$ it is same as that of work or torque.

(3) Units: Joule [S.I.], erg [C.G.S.]

Practical units: electron volt (eV), Kilowatt hour (KWh), Calories (Cal)

Relation between different units: $1 \text{ Joule} = 10^7 \text{ erg}$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joule}$$

$$1 \text{ KWh} = 3.6 \times 10^6 \text{ Joule}$$

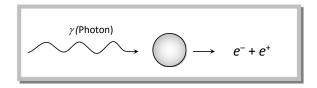
(4) Mass energy equivalence: Einstein's special theory of relativity shows that material particle itself is a form of energy.

The relation between the mass of a particle m and its equivalent energy is given as

$$E = mc^2$$
 where c = velocity of light in vacuum.

If
$$m = 1$$
 amu = 1.67×10^{-27} kg then $E = 931$ MeV = 1.5×10^{-10} Joule.

If
$$m = 1kg$$
 then $E = 9 \times 10^{16}$ Joule


Examples: (i) Annihilation of matter when an electron (e^-) and a positron (e^+) combine with each other, they annihilate or destroy each other. The masses of electron and positron are converted into energy. This energy is released in the form of γ -rays.

$$e^- + e^+ \rightarrow \gamma + \gamma$$

Each γ photon has energy = 0.51 MeV.

Here two γ photons are emitted instead of one γ photon to conserve the linear momentum.

(ii) Pair production: This process is the reverse of annihilation of matter. In this case, a photon (γ) having energy equal to 1.02 MeV interacts with a nucleus and give rise to electron (e^-) and positron (e^+) . This energy is converted into matter.

(iii) Nuclear bomb : When the nucleus is split up due to mass defect (The difference in the mass of nucleons and the nucleus) energy is released in the form of γ -radiations and heat.

- (5) Various forms of energy
- (i) Mechanical energy (Kinetic and Potential)
- (ii) Chemical energy
- (iii) Electrical

- energy
- (iv) Magnetic energy
- (v) Nuclear energy
- (vi) Sound energy

- (vii) Light energy
- (viii) Heat energy
- (6) Transformation of energy: Conversion of energy from one form to another is possible through various devices and processes.

$Mechanical \to electrical$	Light → Electrical	Chemical \rightarrow electrical
	Photoel + HHI PhA	Anode Cathode +
Dynamo		Primary
		cell
Chemical → heat	Sounds → Electrical	Heat → electrical
		Hot Cold
Coal		
Burning	Microphone	Thermo-couple
Heat → Mechanical	Electrical → Mechanical	Electrical → Heat

Engine	Motor	Heater
Electrical → Sound	Electrical → Chemical	Electrical → Light
	Anode Cathode	
Speaker	Voltameter	Bulb