Moment of Inertia of Two Point Masses about Their Center of Mass.

Let m_{1} and m_{2} be two masses distant r from each-other and r_{1} and r_{2} be the distances of their center of mass from ${ }^{m_{1}}$ and m_{2} respectively, then
(1) $r_{1}+r_{2}=r$

(2) $m_{1} r_{1}=m_{2} r_{2}$
(3) $r_{1}=\frac{m_{2}}{m_{1}+m_{2}} r$ and $\quad r_{2}=\frac{m_{1}}{m_{1}+m_{2}} r$
(4) $I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}$
(5) $I=\left[\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right] r^{2}=\mu r^{2} \quad$ [where $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is known as reduced mass $\mu<m_{1}$ and $\mu<m_{2}$.]
(6) In diatomic molecules like $\mathrm{H}_{2}, \mathrm{HCl}$ etc. moment of inertia about their center of mass is derived from above formula.

