Angular Momentum.

The turning momentum of particle about the axis of rotation is called the angular momentum of the particle.

Or
The moment of linear momentum of a body with respect to any axis of rotation is known as angular momentum. If \vec{P} is the linear momentum of particle and \vec{r} its position vector from the point of rotation then angular momentum.

$$
\begin{aligned}
& \vec{L}=\vec{r} \times \vec{P} \\
& \vec{L}=r P \sin \phi \hat{n}
\end{aligned}
$$

Angular momentum is an axial vector i.e. always directed perpendicular to the plane of rotation and along the axis of rotation.
(1) S.I. Unit: $\mathrm{kg}-\mathrm{m}^{2}-\mathrm{s}^{-1}$ or J-sec.
(2) Dimension: $\left[M L^{2} T^{-1}\right]$ and it is similar to Planck's constant (h).
(3) In Cartesian co-ordinates if $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{P}=P_{x} \hat{i}+P_{y} \hat{j}+P_{z} \hat{k}$

Then $\vec{L}=\vec{r} \times \vec{P}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ P_{x} & P_{y} & P_{z}\end{array}\right|=\left(y P_{z}-z P_{y}\right) \hat{i}-\left(x P_{z}-z P_{x}\right) \hat{j}+\left(x P_{y}-y P_{x}\right) \hat{k}$
(4) As it is clear from the figure radial component of momentum $\vec{P}_{r}=P \cos \phi$

Transverse component of momentum $\vec{P}_{\phi}=P \sin \phi$
So magnitude of angular momentum $L=r P \sin \phi$

$$
L=r P_{\phi}
$$

[^0]i.e., The radial component of linear momentum has no role to play in angular momentum.
(5) Magnitude of angular momentum $L=P(r \sin \phi)=L=P d$ [As $d=r \sin \phi$ from the figure.]
\therefore Angular momentum $=($ Linear momentum $) \times \cdot($ Perpendicular distance of line of action of force from the axis of rotation)
(6) Maximum and minimum angular momentum: We know $\vec{L}=\vec{r} \times \vec{P}$
$$
\therefore \quad \vec{L}=m[\vec{r} \times \vec{v}]=m v r \sin \phi=\operatorname{Pr} \sin \phi \quad[\text { As } \vec{P}=m \vec{v}]
$$

$L_{\text {maximum }}=m v r$	When $\|\sin \phi\|=\max =1$ i.e., $\phi=90^{\circ}$	\vec{v} is perpendicular to \vec{r}
$L_{\text {minimum }}=0$	When $\|\sin \phi\|=\min =0$ i.e. $\phi=0^{\circ}$ or 180°	\vec{v} is parallel or anti-parallel to
		\vec{r}

(7) A particle in translatory motion always have an angular momentum unless it is a point on the line of motion because $L=m v r \sin \phi$ and $L>1$ if $\phi \neq 0^{\circ}$ or 180°
(8) In case of circular motion, $\vec{L}=\vec{r} \times \vec{P}=m(\vec{r} \times \vec{v})=m v r \sin \phi$

$$
\begin{array}{lll}
\therefore & L=m v r=m r^{2} \omega & {[\text { As } \vec{r} \perp \vec{v} \text { and } v=r \omega \text {] }} \\
\text { or } & L=I \omega & {\left[A s ~ m r^{2}=\mathrm{I}\right]}
\end{array}
$$

In vector form $\vec{L}=I \vec{\omega}$

$$
\begin{aligned}
& \text { (9) From } \vec{L}=I \vec{\omega} \quad \therefore \frac{d \vec{L}}{d t}=I \frac{d \vec{\omega}}{d t}=I \vec{\alpha}=\vec{\tau} \\
& \vec{\tau}=I \vec{\alpha}]
\end{aligned}
$$

I.e. the rate of change of angular momentum is equal to the net torque acting on the particle. [Rotational analogue of Newton's second law]
(10) If a large torque acts on a particle for a small time then 'angular impulse' of torque is given by

$$
\vec{J}=\int \vec{\tau} d t=\vec{\tau}_{a v} \int_{t_{1}}^{t_{2}} d t
$$

or Angular impulse $\vec{J}=\overrightarrow{\tau_{a v}} \Delta t=\Delta \vec{L}$
\therefore Angular impulse $=$ Change in angular momentum
(11) The angular momentum of a system of particles is equal to the vector sum of angular momentum of each particle i.e., $\vec{L}=\overrightarrow{L_{1}}+\overrightarrow{L_{2}}+\overrightarrow{L_{3}}+\ldots \ldots .+\overrightarrow{L_{n}}$.
(12) According to Bohr Theory angular momentum of an electron in $\mathrm{n}^{\text {th }}$ orbit of atom can be taken as,
$L=n \frac{h}{2 \pi} \quad$ [Where n is an integer used for number of orbit]

[^0]: - Angular momentum $=$ Position vector \times Transverse component of angular momentum

