Time Period of Compound Pendulum
Time period of compound pendulum is given by, $T=2 \pi \sqrt{\frac{L}{g}}$ where $L=\frac{l^{2}+k^{2}}{l}$
Here $I=$ distance of center of mass from point of suspension
$\mathrm{k}=$ radius of gyration about the parallel axis passing through center of mass.

Body	Axis of rotation	Figure	I	\mathbf{k}^{2}	$L=\frac{l^{2}+k^{2}}{l}$	$T=2 \pi \sqrt{ }$
Ring	meTangent passing through the rim and perpendicular to the plane		R	R^{2}	$2 R$	$T=2 \pi \sqrt{ }$
	Tangent parallel to the plane		R	$\frac{R^{2}}{2}$	$\frac{3}{2} R$	$T=2 \pi \sqrt{ }$
Disc	Tangent, Perpendicular to plane		R	$\frac{R^{2}}{2}$	$\frac{3}{2} R$	$T=2 \pi \sqrt{ }$
	Tangent parallel to the plane		R	$\frac{R^{2}}{4}$	$\frac{5}{4} R$	$T=2 \pi \sqrt{ }$
Sphe shell	Tangent		R	$\frac{2}{3} R^{2}$	$\frac{5}{3} R$	$T=2 \pi \sqrt{ }$
Solid sphe	angent		R	$\frac{2}{5} R^{2}$	$\frac{7}{5} R$	$T=2 \pi \sqrt{ }$

