Angular Velocity.

The angular displacement per unit time is defined as angular velocity.

If a particle moves from P to Q in time Δt , $\omega = \frac{\Delta \theta}{\Delta t}$ where $\Delta \theta$ is the angular displacement.

(1) Instantaneous angular velocity
$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

(2) Average angular velocity $\omega_{av} = \frac{\text{total angular displacement}}{\text{total time}} = \frac{\theta_2 - \theta_1}{t_2 - t_1}$

(3) Unit: Radian/sec

(4) Dimension: $[M^0 L^0 T^{-1}]$ which is same as that of frequency.

(5) Vector form
$$\vec{v} = \vec{\omega} \times \vec{r}$$
 [where \vec{v} = linear velocity, \vec{r} = radius vector]

 $^{\it 0}$ Isan axial vector, whose direction is normal to the rotational plane and its direction is given by right hand screw rule.

(6)
$$\omega = \frac{2\pi}{T} = 2\pi n$$
 [where T = time period, n = frequency]

(7) The magnitude of an angular velocity is called the angular speed which is also represented by ω .

