Theorem of Parallel Axes.

Moment of inertia of a body about a given axis I is equal to the sum of moment of inertia of the body about an axis parallel to given axis and passing through center of mass of the body I_{g} and $M a^{2}$ where M is the mass of the body and a is the perpendicular distance between the two axes.

$$
I=I_{g}+M a^{2}
$$

Example: Moment of inertia of a disc about an axis through its center and perpendicular to the plane is $\frac{1}{2} M R^{2}$, so moment of inertia about an axis
 through its tangent and perpendicular to the plane will be

$$
\begin{aligned}
I & =I_{g}+M a^{2} \\
I & =\frac{1}{2} M R^{2}+M R^{2} \\
\therefore \quad I & =\frac{3}{2} M R^{2}
\end{aligned}
$$

