Chapter 5 Gravitational fields

Worksheet
Worked examples
Practical: Data analysis - determining the gravitational constant G from planetary data

End-of-chapter test
Marking scheme: Worksheet
Marking scheme: End-of-chapter test

Worksheet

gravitational constant $G=6.67 \quad 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

Intermediate level

1 Define gravitational field strength at a point in space.
2 Show that the gravitational constant G has the unit $\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.
3 The gravitational field strength on the surface of the Moon is $1.6 \mathrm{Nkg}^{-1}$. What is the weight of an astronaut of mass 80 kg standing on the surface of the Moon?
4 Calculate the magnitude of the gravitational force between the objects described below (you may assume that the objects are 'point masses'):
a two protons separated by a distance of $5.0 \quad 10^{-14} \mathrm{~m}$ (mass of a proton $=1.7 \quad 10^{-27} \mathrm{~kg}$);

b two binary stars, each of mass $5.0 \quad 10^{28} \mathrm{~kg}$, with a separation of $8.0 \quad 10^{12} \mathrm{~m}$;
[2]

c two 1500 kg elephants separated by a distance of 2.0 m .
[2]

5 The diagram shows the Moon and an artificial satellite orbiting round the Earth. The radius of the Earth is R.

a Write an equation for the gravitational field strength g at a distance r from the centre of an isolated object of mass M.
b By what factor would the gravitational field decrease if the distance from the centre of the mass were doubled?
c The satellite orbits at a distance of $5 R$ from the Earth's centre and the Moon is at a distance of $59 R$. Calculate the ratio:
gravitational field strength at position of satellite
gravitational field strength at position of Moon

Higher level

6 The planet Neptune has a mass of $1.0 \quad 10^{26} \mathrm{~kg}$ and a radius of $2.2 \quad 10^{7} \mathrm{~m}$. Calculate the surface gravitational field strength of Neptune.
7 Calculate the radius of the planet Pluto given its mass is $5.0 \quad 10^{23} \mathrm{~kg}$ and its surface gravitational field strength has been estimated to be $4.0 \mathrm{Nkg}^{-1}$.
8 A space probe of mass 1800 kg is travelling from Earth to the planet Mars. The space probe is midway between the planets. Use the data given to calculate:
a the gravitational force on the space probe due to the Earth;
b the gravitational force on the space probe due to Mars;
c the acceleration of the probe due to the gravitational force acting on it.

Data

separation between Earth and Mars $=7.8 \quad 10^{10} \mathrm{~m}$
mass of Earth =6.0 $\quad 10^{24} \mathrm{~kg} \quad$ mass of Mars $=6.4 \quad 10^{23} \mathrm{~kg}$
9 An artificial satellite orbits the Earth at an altitude of 400 km above its surface. The satellite has a mass 5000 kg , the radius of the Earth is 6400 km and the mass of the Earth is $6.0 \quad 10^{24} \mathrm{~kg}$. For this satellite, calculate:
a the gravitational force experienced;
b its centripetal acceleration;
c its orbital speed.
10 The variation of the gravitational field strength g of a planet with the distance r from its centre is shown below.

a Explain why the gradient of the graph is equal to $G M$, where M is the mass of the planet.
b Use the information given in a and the graph to determine the mass of the planet.
c Explain how the graph above would change for a planet of the same density but twice the radius.

Extension

11 The planets in our Solar System orbit the Sun in almost circular orbits.
a Show that the orbital speed v of a planet at a distance r from the centre of the Sun is given by:
$v=\sqrt{\frac{G M}{r}}$
b The mean distance between the Sun and the Earth is $1.510^{11} \mathrm{~m}$ and the mass of the Sun is $2.0 \quad 10^{30} \mathrm{~kg}$. Calculate the orbital speed of the Earth as it travels round the Sun.
12 There is point between the Earth and the Moon where the net gravitational field strength is zero. At this point the Earth's gravitational field strength is equal in magnitude but opposite in direction to the gravitational field strength of the Moon. Given that:
$\frac{\text { mass of Earth }}{\text { mass of Moon }}=81$
calculate how far this point is from the centre of the Moon in terms of R, where R is the separation between the centres of the Earth and the Moon.

Worked examples

Example 1

The Sun has a mean radius of 700 Mm and a surface gravitational field strength of $270 \mathrm{Nkg}^{-1}$. Determine the mass of the Sun and its mean density.
(Gravitational constant $G=6.67 \quad 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.)
The gravitational field strength g is given by:
$g=-\frac{G M}{r^{2}} \longrightarrow$ We are assuming that the
Therefore:
$M=\frac{g r^{2}}{G}$ Sun is an isolated body with its entire mass concentrated at its centre.

$M=\frac{270\left(700 \quad 10^{6}\right)^{2}}{6.67 \quad 10^{-11}}=1.98 \quad 10^{30} \mathrm{~kg}$
$\begin{array}{lll}M & 2.0 & 10^{30} \mathrm{~kg}\end{array}$
The density of the Sun is given by:

$$
\begin{aligned}
& =\frac{M}{V}=\frac{M}{\frac{4}{3} r^{3}} \\
& =\frac{1.98 \quad 10^{30}}{\frac{4}{3} \quad\left(\begin{array}{lll}
700 & 10^{6}
\end{array}\right)^{3}} 1.4 \quad 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

Tip

There is no need to retain the minus sign in the calculation for the mass of the Sun because we are only interested in the magnitude of the field strength. The minus sign signifies an attractive gravitational field.

Example 2

The gravitational field strength on the surface of the Earth is $9.81 \mathrm{Nkg}^{-1}$. A satellite in a geostationary orbit round the Earth experiences a gravitational field strength of $0.225 \mathrm{~N} \mathrm{~kg}^{-1}$. Determine the orbital radius r of the satellite from the centre of the Earth in terms of the radius of the Earth R_{E}.
The gravitational field strength g is given by:
$g=-\frac{G M}{r^{2}}$
Therefore we have:
$g \propto \frac{1}{r^{2}} \quad$ or $\quad g r^{2}=$ constant
Using the field strengths at distances R_{E} and r from the centre of the Earth, we have:
$9.81 R_{\mathrm{E}}^{2}=0.225 r^{2}$
$\frac{r}{R_{\mathrm{E}}}=\sqrt{\frac{9.81}{0.225}}=6.60 \quad 6.6$
The satellite orbits at a distance of 6.6 Earth radii from the centre of the Earth.

Practical

Data analysis - determining the gravitational constant G from planetary data

Introduction

In the absence of experimental work, you have the opportunity to analyse planetary data in order to determine the gravitational constant G. The data analysis is based on the equation for the gravitational field strength g, which is outlined on pages 53 and 54 of Physics 2.

Planetary data for the six closest planets to the Sun

Planet	Mean radius \mathbf{r} (m)	Mass M (kg)	Surface field strength g ($\mathbf{N k g}^{-1}$)	G ($\left.\mathbf{N m}^{\mathbf{2}} \mathbf{k g}^{\mathbf{- 2}}\right)$
Mercury	2.4210^{6}	$3.30 \quad 10^{23}$	3.76	
Venus	6.0910^{6}	$4.87 \quad 10^{24}$	8.77	
Earth	6.3810^{6}	$5.98 \quad 10^{24}$	9.81	
Mars	3.3810^{6}	$6.42 \quad 10^{23}$	3.80	
Jupiter	$\begin{array}{lll}7.14 & 10^{7}\end{array}$	$1.90 \quad 10^{27}$	24.9	
Saturn	6.0410^{7}	5.6710^{26}	10.4	

Data analysis

1 Copy the table above.
2 Use $g=\frac{G M}{r^{2}}$ to complete the last column of the table.
3 Determine your average value for the gravitational constant G. How does it compare with the accepted value of $6.67 \quad 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$?

4 Plot a graph of gravitational field strength g against $\frac{M}{r^{2}}$.
5 Draw a straight line of best fit. The gradient of the graph is equal to G.
6 Determine the value of G from the graph. What is the percentage uncertainty in your value?

7 Next, plot a graph of $\lg (g)$ against $\lg (r)$.
8 Draw a straight line of best fit.
9 Explain why the gradient of the graph is equal to -2 .
10 How can you use the graph to determine a value for the gravitational constant G ?

End-of-chapter test

Answer all questions.

gravitational constant $G=6.67 \quad 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
1 a State Newton's law of gravitation.
b Suggest why the planets in our Solar System may be regarded as point masses.
c Determine the force between two identical $6.0 \quad 10^{8} \mathrm{~kg}$ asteroids separated by a distance of $8.6 \quad 10^{6} \mathrm{~m}$.
2 The graph shows the variation of the gravitational field strength g for a planet with distance r from its centre.

a State the value of the gravitational field strength at point \mathbf{P}.
b Use your answer to a to determine the mass M of the planet.
c Show that the field strength obeys an inverse square law with distance.
3 Neutron stars are remnants of collapsed stars in our Universe. Such stars have colossal densities and gravitational field strengths. For one particular neutron star of mass $2.6 \quad 10^{28} \mathrm{~kg}$, the gravitational field strength at its surface is estimated to be $2.3 \quad 10^{11} \mathrm{Nkg}^{-1}$.
a Determine the radius of the neutron star.
b What is the weight of a mass of 1.0 g on the surface of the neutron star?
Total: $\overline{18}$ Score: $\%$

Marking scheme

Worksheet

1 Gravitational field strength at a point, g, is the force experienced per unit mass at that point. [1]
$2 F=-\frac{G m_{1} m_{2}}{r^{2}}$ [1]
Therefore: $G=\frac{F r^{2}}{m_{1} m_{2}} \quad\left[\frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right] \quad\left[\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}\right][1]$
$3 g=\frac{F}{m}$
$F=m g=80 \quad 1.6[1]$
$F=128 \mathrm{~N} \quad 130 \mathrm{~N}$ (F is the 'weight' of the astronaut.) [1]
$4 \quad \mathbf{a} \quad F=\frac{G m_{1} m_{2}}{r^{2}} \quad[1]$
b $\quad F=\frac{\begin{array}{llllll}6.67 & 10^{-11} & 5.0 & 10^{28} & 5.0 & 10^{28} \\ \left.\begin{array}{lllll}8.0 & 10^{12}\end{array}\right)^{2} & & \end{array} \text { [1] }}{}$

$$
F=2.61 \quad 10^{21} \mathrm{~N} \quad 2.6 \quad 10^{21} \mathrm{~N}[1]
$$

c $F=-\frac{6.67 \quad 10^{-11} 1500^{2}}{2.0^{2}} \quad[1]$

$$
F=3.75 \quad 10^{-5} \mathrm{~N} \quad 3.8 \quad 10^{-5} \mathrm{~N}
$$

5 a $g=-\frac{G M}{r^{2}}$ [1]
b The field strength obeys an inverse square law with distance $\left(g \propto \frac{1}{r^{2}}\right)$. [1] Doubling the distance decreases the field strength by a factor of four. [1]
c Ratio $=\frac{G M /(5 R)^{2}}{G M /(59 R)^{2}}$ [1]
ratio $=\frac{59^{2}}{5^{2}}=\left(\frac{59}{5}\right)^{2} \quad[1] ; \quad$ ratio $140[1]$
$6 g=-\frac{G M}{r^{2}}$ [1]
$g=\frac{6.67 \quad 10^{-11} \quad 1.0 \quad 10^{26}}{\left(\begin{array}{ll}2.2 & 10^{7}\end{array}\right)^{2}}$ (magnitude only) [1]
$g=13.8 \mathrm{Nkg}^{-1} \quad 14 \mathrm{Nkg}^{-1}[1]$
$7 g=-\frac{G M}{r^{2}}$ [1]
$r^{2}=\frac{G M}{g}=\frac{6.67 \quad 10^{-11} \quad 5.0 \quad 10^{23}}{4.0}=8.34 \quad 10^{12} \mathrm{~m}^{2} \quad[1]$
$r=\sqrt{8.34 \quad 10^{12}} \quad 2.9 \quad 10^{6} \mathrm{~m}[1]$

8 a $F=-\frac{G m_{1} m_{2}}{r^{2}}$
$F=\frac{6.67 \quad 10^{-11} \quad 1800 \quad 6.0 \quad 10^{24}}{\left(\begin{array}{ll}3.9 & 10^{10}\end{array}\right)^{2}}\left(r=\frac{7.8 \quad 10^{10}}{2}=3.9 \quad 10^{10} \mathrm{~m}\right) \quad[1]$
$F=4.74 \quad 10^{-4} \mathrm{~N} \quad 4.7 \quad 10^{-4} \mathrm{~N} \quad[1]$
b $F=-\frac{G m_{1} m_{2}}{r^{2}}$
$F=\frac{6.67}{} 10^{-11} \quad 1800 \quad 6.4 \quad 10^{23} \quad[1]$
$F=5.05 \quad 10^{-5} \mathrm{~N} \quad 5.1 \quad 10^{-5} \mathrm{~N} \quad[1]$
c $\quad a=\frac{F}{m}$ (F is the net force.) [1]
$a=\frac{4.74 \quad 10^{-4}-5.05 \quad 10^{-5}}{1800} \quad[1]$
$\begin{array}{lll}\text { a } & 2.4 \quad 10^{-7} \mathrm{~m} \mathrm{~s}^{-2} \text { (towards the centre of the Earth) [1] }\end{array}$
9 a $F=-\frac{G m_{1} m_{2}}{r^{2}}$ [1]
$F=\frac{6.67}{} 10^{-11} \quad 5000 \quad 6.0 \quad 10^{24}$ (6800 $\left.10^{3}\right)^{2} \quad(r=6400+400=6800 \mathrm{~km}) \quad[1]$
$F=4.33 \quad 10^{4} \mathrm{~N} \quad 4.3 \quad 10^{4} \mathrm{~N}[1]$
b $\quad a=\frac{F}{m}=\frac{4.33 \quad 10^{4}}{5000}[1]$
$a=8.66 \mathrm{~m} \mathrm{~s}^{-2} \quad 8.7 \mathrm{~m} \mathrm{~s}^{-2}[1]$
c $\quad a=\frac{v^{2}}{r}[1]$
$v^{2}=a r=8.66 \quad 6800 \quad 10^{3}[1] ; \quad v \quad 7.7 \mathrm{~km} \mathrm{~s}^{-1}[1]$
10 a $g=\frac{G M}{r^{2}}$ therefore $\left.g=\begin{array}{c}g M \\ \frac{1}{r^{2}} \\ x\end{array}\right]$
Comparing this equation with the equation for a straight line through the origin, we can see that the gradient is equal to $G M$. [1]
b From the graph, gradient $=\frac{3.5}{8.0 \quad 10^{-14}}=4.38 \quad 10^{13} \mathrm{Nm}^{2} \mathrm{~kg}^{-1} \quad 4.4 \quad 10^{13} \mathrm{Nm}^{2} \mathrm{~kg}^{-1} \quad$ [1]
$G M=4.38 \quad 10^{13} \quad[1]$
$M=\begin{array}{cccc}4.38 & 10^{13} \\ 6.67 & 10^{-4} & 6.6 & 10^{23} \mathrm{~kg}[1]\end{array}$
c Mass = density volume
For a sphere, volume $\propto \operatorname{radius}^{3}\left(V=\frac{4}{3} \quad r^{3}\right)$ [1]
Since the radius is doubled, the volume of the planet will be eight times as great.
The mass M will therefore be eight times as great. [1]
The gradient of the graph is equal to $G M$. Therefore the gradient will increase by a factor of eight. [1]

11 a Gravitational force on planet $=\frac{G M m}{r^{2}}$ [1]

$$
\begin{equation*}
\text { Centripetal force }=\frac{m v^{2}}{r} \tag{1}
\end{equation*}
$$

Equating these two forces, we have: $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$ [1]
Therefore: $v^{2}=\frac{G M}{r}$ or $v=\sqrt{\frac{G M}{r}}[1]$
b $v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{6.67 \quad 10^{-11} \quad 2.0 \quad 10^{30}}{1.5 \quad 10^{11}}}$ [1]
$v=2.98 \quad 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \quad 30 \mathrm{~km} \mathrm{~s}^{-1} \quad[1]$
12 The field strengths are the same at point \mathbf{P}.

Marking scheme

End-of-chapter test

1 a The attractive force between two point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation.

One mark for the idea that $F \propto m_{1} m_{2}$. [1]
One mark for the idea that $F \propto \frac{1}{r^{2}}$. [1]
One mark for reference to either attractive or point masses. [1]
b The size of the planets is very small compared with the distances between the planets and the Sun. [1]
c $F=-\frac{G m_{1} m_{2}}{r^{2}}[1]$
$F=\frac{6.67}{} 10^{-11} \quad 6.0 \quad 10^{8} \quad 6.0 \quad 10^{8}$ (1]
$\begin{array}{lll}F & 3.2 & 10^{-7} \mathrm{~N}\end{array}[1]$
2 a $8.0 \mathrm{Nkg}^{-1}[1]$
b $g=-\frac{G M}{r^{2}}$ [1]
$M=\frac{g r^{2}}{G}=\frac{8.0 \quad\left(3.0 \quad 10^{7}\right)^{2}}{6.67 \quad 10^{-11}}[1] ; \quad M \quad 1.1 \quad 10^{26} \mathrm{~kg}$ [1]
c $g \propto \frac{1}{r}$ 2 or $g r^{2}=$ constant [1]
Taking values for g and r from the graph:
$12.0 \quad\left(\begin{array}{llll}2.4 & 10^{7}\end{array}\right)^{2} \quad 6.9 \quad 10^{15}$
$8.0 \quad\left(\begin{array}{llll}3.0 & 10^{7}\end{array}\right)^{2} \quad 7.2 \quad 10^{15}$
$4.0 \quad\left(\begin{array}{llll}4.3 & \left.10^{7}\right)^{2} & 7.1 & 10^{15}\end{array}\right.$
$\begin{array}{lllll}2.0 & (6.0 & \left.10^{7}\right)^{2} & 7.2 & 10^{15}\end{array}$
These products $g r^{2}$ are almost the same (to 1 s.f. they are all $7 \quad 10^{15}$). [1]
3 a $g=-\frac{G M}{r^{2}}$ [1]

$$
\begin{aligned}
& r^{2}=\frac{G M}{g}=\frac{6.67 \quad 10^{-11} \quad 2.6 \quad 10^{28}}{2.3 \quad 10^{11}}=7.54 \quad 10^{6} \mathrm{~m}^{2} \quad[1] \\
& r=\sqrt{7.54} \quad 10^{6} \quad 2.7 \quad 10^{3} \mathrm{~m}[1] \\
& \text { b } \quad F=m g=0.001 \quad 2.3 \quad 10^{11}[1] \\
& F=2.3 \quad 10^{8} \mathrm{~N} \quad[1]
\end{aligned}
$$

