SAT II PHYSICS

Vector and Forces

torque $=$ force \times length of moment arm
the sum of the clockwise moments=the sum of the counterclockwise moments

Motion and Forces

average speed $=\frac{\text { distance covered }}{\text { time required }}$
average velocity $=\frac{\text { displacement }}{\text { time }}$
distance covered=average speed \times time
$\mathrm{S}=\mathrm{v}_{\mathrm{av}} t$
acceleration $=\frac{\text { change in velocity }}{\text { time required for change }}$
$a=\frac{v_{f}-v_{i}}{t}=\frac{v}{t}$
Motion with constant acceleration (starting from rest)
$v_{a v}=v_{f} / 2$
$v_{f}=a t\left(v_{f}=g t\right)$
$S=\frac{1}{2} a t^{2}\left(S=\frac{1}{2} g t^{2}\right)$
$v_{f}{ }^{2}=2 a s\left(v_{f}^{2}=2 g s\right)$
$v_{a v}=$ average speed
$v_{f}=$ final velocity
$a=$ acceleration
$t=$ elapsed time
$s=$ distance covered
$v_{a v}=\frac{v_{i}+v_{f}}{2}$
$v_{f}=v_{i}+a t$
$S=v_{i} t+\frac{1}{2} a t^{2}$
$v_{f}{ }^{2}=v_{i}^{2}+2 a s$
$F t=$ change in momentum $=$ mass \times change in velocity momentum=mass \times velocity
Centripetal Force
$a_{c}=\frac{v^{2}}{r}$

SAT Online Physics Practice Tests:

www.testprepkart.com
$F_{c}=\frac{m v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$a=\frac{4 \pi^{2} r}{T^{2}}$
Gravitational Fields
$F=\frac{G m_{1} m_{2}}{r^{2}}$
$v=\sqrt{\frac{G M_{s}}{r}}$

Work, Energy, Simple Machines

work $=$ force \times distance
gravitational potential energy=wh=mgh
kinetic energy $=\frac{1}{2} m v^{2}$
energy produced $=\mathrm{mc}^{2}$
coefficient of sliding friction $=\frac{\text { force of friction during motion }}{\text { normal }}$
work against friction $=$ friction \times distance object moves
elastic potential energy $=\frac{1}{2} \mathrm{kx}^{2}$
power $=\frac{\text { work }}{\text { time }}$
power $=\frac{\text { force } \times \text { distance }}{\text { time }}$
actual mechanical advantage $(\mathrm{AMA})=\frac{\text { resistance }}{\text { actual effort }}$
$A M A=\frac{F_{R}}{F_{E}}$
work output=resistance \times distance resistance moves
work output $=\mathrm{F}_{\mathrm{R}} \mathrm{R}_{\mathrm{R}}$
work input=effort \times distance effort moves
work input $=\mathrm{F}_{\mathrm{E}} S_{E}$
Under ideal conditions there is no useless work. Then
$\left\{\begin{array}{l}\text { work output=work input } \\ \frac{F_{R}}{F_{E}}=\frac{S_{E}}{S_{R}}=I M A(\text { ideal mechanical advantage) }\end{array}\right.$
For a machine
efficirncy $=\frac{\text { work output }}{\text { work input }}$
efficiency $=\frac{\text { AMA }}{\text { IMA }}=\frac{\text { ideal effort }}{\text { actual effort }}$
$\frac{\text { weight of object }}{\text { ideal effort }}=\frac{\text { length of plane }}{\text { height of plane }}=I M A$

Fluid Mechanics

density $=\frac{\text { mass }}{\text { volume }}$
For solids and liquids:
sp.gr. $=\frac{\text { density of substance }}{\text { density of water }}$
$\left\{s p . g r .=\frac{\text { weight of substance }}{\text { weight of equal volume of water }}\right.$
$s p . g r .=\frac{\text { mass of substance }}{\text { mass of equal volume of water }}$
$P=\frac{F}{A}$
$P=h d g$ (h=height, $\mathrm{d}=$ density)
$F=h d g A$
$I M A=\frac{F}{f}=\frac{A}{a}=\frac{(\text { diameter of large piston })^{2}}{(\text { diameter of small piston })^{2}}$
For a solid that sinks in water:
sp.gr. $=\frac{\text { weight in air }}{\text { apparent loss of weight in water }}$
For a liquid:
$s p . g r .=\frac{\text { apparent loss in weight of solid in liquid }}{\text { apparent loss in weight of solid in water }}$

Heat, Temperature, Thermal Expansion

change in length $=$ oringinal length \times coeff. of expansion \times temp. change
$\frac{\mathrm{V}_{1}}{\mathrm{~V}}=\frac{T_{1}}{T_{2}}$
$p_{1}^{\forall} V_{1}={ }_{p}^{2} V_{2} \nmid V=$ volume, $\mathrm{T}=$ absolute temperature, $\mathrm{P}=$ pressure
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$

Measurement of Heat

heat required for melting $=$ mass $\times \mathrm{H}_{\mathrm{F}}$ heat required for vaporization $=$ mass $\times \mathrm{H}_{\mathrm{v}}$ heat gianed(or lost) $=$ mass \times sp.ht.temp.change

+ mass melted \times heat of fusion
+mass vaporized \times heat of vaporization

Heat and Work; Heat Transfer

heat flow=change ininternal energy+work done by system

$$
\mathrm{Q}=\mathrm{U}+\mathrm{W}
$$

Wave Motion and Sound

Periodic Motion
For a stretched spring:
$\left\{\begin{array}{l}F=-k x \\ T=2 \pi \sqrt{\frac{m}{k}}\end{array}\right.$
For waves:
$\left\{\begin{array}{l}T=\frac{1}{f} \\ v=f \times \lambda \quad(\lambda=\text { wavelength })\end{array}\right.$
the number of beats=the difference between the two frequence
Vibrating Air Columns $\left\{\begin{array}{l}\begin{array}{l}\text { Closed Pipes } \\ \lambda=4 l_{a} \\ \text { Open Pipes } \\ \lambda=2 l_{a} \\ \lambda=2 l_{s}\end{array}\end{array}\right.$

Geometrical Optics: Reflection and Refraction

For a special mirror the focal length is equal to one-half of the radius of the spherical shell
$f=R / 2$
Law of Refraction
$n=\frac{\sin \theta_{1}}{\sin \theta_{2}}(n=$ index of refraction $)$
$n=\frac{\text { speed of light in vacuum(or air) }}{\text { speed of light in the substance }}$
$\frac{n_{2}}{n_{1}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}$
Images Formed by Lenses
$\frac{1}{\text { object distance }}+\frac{1}{\text { image distance }}=\frac{1}{\text { focal length }}$
$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
$\frac{\text { size of image }}{\text { size of object }}=\frac{\text { image distance }}{\text { object distance }}=$ magnification (m)
OBJECT DISTANCE
IMAGE CHARACTERISTICS
Convex Lens(or Concave Mirror)
greater than $2 f$
real, smaller, between f and $2 f$, inverted

| 2f
 between f and 2f
 less than f | real, same size, 2f, inverted
 real, larger, greater than 2f, inverted
 virtual. ;larger, q more than p, erect |
| :--- | :--- | :--- |
| Concave Lens(or Convex Mirror) | |
| any distance | virtual smaller, erect, q less than p |

telescopic magnification $=\frac{\text { focal length of the objective }}{\text { focal length of the eyepiece }}$
illmination $=\frac{\text { intensity of source }}{\text { distance }^{2}}$

Physical Optics: Interference and Diffraction

$\frac{\lambda}{\mathrm{d}}=\frac{\mathrm{x}}{L}$
$\lambda=$ wavelength
$\mathrm{d}=$ distance between the two silts
$\mathrm{L}=$ distance between the barrier and the screen
$\mathrm{x}=$ distance between the central maximum and the first bright fringe

Static Electricity-Electric Circuits

$F=\frac{k q_{1} q_{2}}{d^{2}}$
$E=F / q(\mathrm{E}=$ electric field intensity, $\mathrm{F}=$ the force exerted on positive charge q$)$
potential difference $=\frac{\text { work }}{\text { charge }}$
$V=\frac{\text { work }}{q}$
$E=V / d$ ($\mathrm{E}=$ electric field intensity, $\mathrm{V}=$ the difference of potential between the plates)
$V=\frac{\text { work }}{q}$
$R=\frac{k L}{A}\left\{\begin{array}{l}L=\text { length in meters } \\ \mathrm{R}=\text { resistance in ohms } \\ \mathrm{A}=\text { cross-sectional area in meter }{ }^{2} \\ \mathrm{k}=\text { a constant for the material and is called resistivity; unit is ohm-meter }\end{array}\right.$
$I_{T}=V_{T} / R_{T}$
$R_{T}=V_{T} / I_{T}$
$V_{T}=I_{T} R_{T}$

	series circuit	parallel circuit	series-parallel circuit
current	$I_{T}=I_{1}=I_{2}$	$I_{T}=I_{1}+I_{2}$	$I_{T}=I_{3}=I_{1}+I_{2}$
resistanc e	$R_{T}=R_{1}+R_{2}$	$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$R_{T}=R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

voltage	$V_{T}=V_{1}+V_{2}$	$V_{T}=V_{1}=V_{2}$	$V_{T}=V_{1}+V_{3}=V_{2}+V_{3} ; V_{1}=V_{2}$
IR-drop	$V_{T}=I_{T} R_{T} ; V_{1}=I_{1} R_{1} ; V_{2}=I_{2} R_{2}$, etc		
symbols	$I_{1}=$ current through $\mathrm{R}_{1} ; V_{2}=$ potential difference across R, etc.		

$V_{T}=e m f-I r$
$H=0.24 I^{2} R t$
$H=I^{2} R t$
$P=V I ; P=I^{2} R ; P=V^{2} / R$
energy $=$ power \times time

Magnetism; Meters, Motors, Generators

$F=I L B$ ($L=$ the length of wire in the magnetic field, $\mathrm{B}=$ the flux desity)
$F=q v B$ (v=velocity)
$\frac{\text { second emf }}{\text { primary emf }}=\frac{\text { number of turns on secondary }}{\text { number of turns on primary }}$
power supplied by secondary=efficiency \times power supplied to primary
when the efficiency is $100 \%, V_{s} I_{s}=V_{p} I_{p}$
$V_{s} I_{s}=V_{p} I_{p} \times$ efficiency
$\omega=2 \pi / T=2 \pi f$
$I=I_{\text {max }} \sin \omega t$
$V=V_{\text {max }} \sin \omega t$
$V=I_{\text {max }} R \sin \omega t$
$P=I^{2} R=I^{2}{ }_{\max } R \sin ^{2} \omega t$
$\overline{I^{2}}=\frac{1}{2} I^{2}{ }_{\text {max }}$
$I_{r m s}=\sqrt{\frac{1}{2} I_{\text {max }}^{2}}=0.0707 I_{\text {max }}$
$P_{\text {avg }}=I_{r \text { rus }}^{2} R=\frac{1}{2} I^{2}{ }_{\text {max }} R$
$V_{r m s}=0.707 V_{\max }$

Elements of Electronics

Capacitors and Capacitance
Q=CV
1 farad $=10^{6}$ microfarads
potential energy $=\frac{1}{2} C V^{2}$
P.E. $=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}$

Photons, Atoms, Nuclei
$E_{k}=h f-W$
$E_{k}=$ kinetic energy
$\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ joule-second
W=work
$\mathrm{f}=$ frequency
momentum of the photon $=\frac{\text { Planck's constant }}{\text { wavelength }}$
$p=\frac{h}{\lambda}$
$\lambda=\frac{h}{m v}$
$E=m c^{2}$

Special Relativity

$L=L_{0} \sqrt{1-\left(v^{2} / c^{2}\right)}$
$t=\frac{t_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}$
$m=\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}$

