SC2 - O'Malley
For questions $1-3$:
$\begin{array}{ll}\text { a. } & \mathrm{N}_{2} \mathrm{O}_{5} \\ \text { b. } & \mathrm{N}_{2} \mathrm{O}_{3} \\ \text { c. } & \mathrm{NO}_{2} \\ \text { d. } & \mathrm{NO} \\ \text { e. } & \mathrm{N}_{2} \mathrm{O}\end{array}$

1. What is the empirical formula for a compound containing $63.8 \% \mathrm{~N}$ and 36.2% O?
2. What is the empirical formula for a compound containing $36.7 \% \mathrm{~N}$ and 63.3% O?
3. What is the empirical formula for a compound containing $25.9 \% \mathrm{~N}$ and 74.1% O?

For questions 4-6:
a. 2.294
b. $\quad 36.51$
c. 1.409
d. 25.3
e. 2.513
4. \quad For $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+$ $6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if you begin with 16.00 g ammonia and excess oxygen, how many grams of water will be obtained?
5. For $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+$ $6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if you begin with 66.00 g ammonia and 54.00 g oxygen, how many grams of water will be obtained?
6. \quad For $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+$ $6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, how many moles of NH_{3} are needed to produce 2.513 moles of NO?

For questions 7-10:

$$
\begin{aligned}
& \text { a. } \quad 1.807 \times 10^{-24} \\
& \text { b. } \quad 3.476 \times 10^{-2} \\
& \text { c. } \quad 1.171 \times 10^{-2} \\
& \text { d. } 1.204 \times 10^{24} \\
& \text { e. } \quad 2.414 \times 10^{-1}
\end{aligned}
$$

7. How many phosphine molecules are in two moles of phosphine?
8. How many moles of CO_{2} are in $1.53 \mathrm{~g} \mathrm{CO}_{2}$?
9. How many atoms are in one mole of water?
10. How many moles are in 4.35 grams of water?
11. When the following is balanced,
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, what is the coefficient of CO_{2} ?
a. 2
$\begin{array}{ll}\text { b. } & 4 \\ \text { c. } & 8 \\ \text { d. } & 10\end{array}$
e. 13

SAT II Review (Stoichiometry)
12. What is the approximate
percentage composition by mass of
the element oxygen in the
compound HClO_{4} ?
a. 16%
b. 35%
c. 50%
d. 64%
e. 75%
13. When the following equation is balanced, how many moles of NF_{3} would be required to react completely with 6 moles of $\mathrm{H}_{2} \mathrm{O}$?

	$\mathrm{NF}_{3}(\mathrm{~g})+\ldots \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow$
\ldots	$\mathrm{HF}(\mathrm{g})+\ldots \mathrm{NO}(\mathrm{g})+\ldots \mathrm{NO}_{2}(\mathrm{~g})$
a. $\quad 0.5$ mole	
b. $\quad 1$ mole	
c. 2 moles	
d. 3 moles	
e. 4 moles	

14. For the following equation,
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+$ $3 \mathrm{CO}_{2}(\mathrm{~g})$, when $3.0 \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$ is allowed to completely react with 56 g CO , approximately how many moles of iron, Fe , are produced?
a. $\quad 0.7$
b. $\quad 1.3$
c. 2.0
d. 2.7
e. 6.0
15. What is the percent by mass of silicon in a sample of SiO_{2} ?

a.	21%
b.	33%
c.	47%
d.	54%
e.	78%

16. When the following equation is balanced, __ $\mathrm{PH}_{3}+\ldots \mathrm{O}_{2} \rightarrow$ $-\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$, what is the coefficient of $\mathrm{H}_{2} \mathrm{O}$?
a. 1
b. 2
c. 3
d. 4
e. 5
17. What are the products of the following reaction? $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
a. $\quad \mathrm{O}_{2}$
b. $\quad \mathrm{BaSO}_{4}$
c. O_{2} and BaSO_{4}
d. O_{2} and BaSO_{4}
e. $\mathrm{H}_{2} \mathrm{O}$ and BaSO_{4}
18. For the equation, $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $2 \mathrm{MgO}(\mathrm{s})$, if 48.6 g Mg is placed in a container with $64.0 \mathrm{~g} \mathrm{O}_{2}$ and the reaction is allowed to go to completion, what is the mass of MgO (s) produced?
a. $\quad 15.4 \mathrm{~g}$
b. $\quad 32.0 \mathrm{~g}$
c. $\quad 80.6 \mathrm{~g}$
d. $\quad 96.3 \mathrm{~g}$
e. $\quad 112 \mathrm{~g}$
19. For the equation, $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$ $\rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, which of the following is true?
a. If 1 mole of H_{2} is consumed, 0.5 moles of N_{2} is produced
b. If 1 mole of H_{2} is consumed, 0.5 mole of $\mathrm{H}_{2} \mathrm{O}$ is produced
c. If 0.5 mole of H_{2} is consumed, 1 moles of N_{2} is produced
d. If 0.5 mole of H_{2} is consumed, 1 moles of NO is produced
e. If 0.5 mole of H_{2} is consumed, 1 moles of $\mathrm{H}_{2} \mathrm{O}$ is produced
20. Which of the following expressions is equal to the number of iron (Fe) atoms present in 10.0 g Fe ?
(atomic mass of $\mathrm{Fe}=55.9$)
a. $10 \times 55.9 \times\left(6.022 \times 10^{23}\right)$ atoms
b. $\left(6.022 \times 10^{23}\right) / 10 \times 55.9$ atoms
c. $10 \times\left(6.022 \times 10^{23}\right) / 55.9$ atoms
d. $55.9 / 10 \times\left(6.022 \times 10^{23}\right)$ atoms
e. $10 /\left(55.9 \times 6.022 \times 10^{23}\right)$ atoms
21. The formula $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4} \mathrm{Br}$ represents
a. 4 atoms
b. 8 atoms
c. 12 atoms
d. 23 atoms
e. 27 atoms
22. What is the molecular formula of a compound made of $25.9 \% \mathrm{~N}$ and 74.1% O?
a. NO
b. $\quad \mathrm{NO}_{2}$
c. $\mathrm{N}_{2} \mathrm{O}$
d. $\quad \mathrm{N}_{2} \mathrm{O}_{5}$
e. $\mathrm{N}_{2} \mathrm{O}_{4}$
23. The balanced molar relationship from the reaction $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is
a. 1:1:1
b. 2:1:1
c. $1: 2: 1$
d. $2: 2: 1$
e. 2:1:2
24. What volume of $\mathrm{H}_{2} \mathrm{O}$ is required to produce $5 \mathrm{~L} \mathrm{O}_{2}$ by the following equation: $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a. 3 L
b. 5 L
c. 10 L
d. 16 L
e. 14 L
25. What is the molecular weight of HClO_{4} ?
a. 52.5
b. $\quad 73.5$
c. $\quad 96.5$
d. $\quad 100.5$
e. 116.5
26. Which of the following molecules contains 17 atoms?
a. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
b. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
c. $\mathrm{Ca}\left(\mathrm{HCO}_{2}\right)_{2}$
d. $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$
e. Two of the above
27. Twenty liters of NO gas react with excess oxygen. How many liters of NO_{2} gas are produced if the NO gas reacts completely? $\left(2 \mathrm{NO}+\mathrm{O}_{2}\right.$ $\rightarrow 2 \mathrm{NO}_{2}$)
a. 5 L
b. $\quad 10 \mathrm{~L}$
c. 20 L
d. 40 L
e. 50 L
28. How much reactant remains if 92 g HNO_{3} reacts with 24 g LiOH assuming a complete reaction?
a. $\quad 46 \mathrm{~g} \mathrm{HNO}_{3}$
b. $29 \mathrm{~g} \mathrm{HNO}_{3}$
c. $12 \mathrm{~g} \mathrm{HNO}_{3}$
d. 2 g LiOH
e. 12 g LiOH
29. What is the density, at STP, of a diatomic gas whose gram-formula mass is $80 . \mathrm{g} / \mathrm{mol}$?
a. $\quad 1.9 \mathrm{~g} / \mathrm{L}$
b. $\quad 2.8 \mathrm{~g} / \mathrm{L}$
c. $\quad 3.6 \mathrm{~g} / \mathrm{L}$
d. $\quad 4.3 \mathrm{~g} / \mathrm{L}$
e. $\quad 5.0 \mathrm{~g} / \mathrm{L}$
30. How many liters of H_{2} can be produced at STP by the decomposition of $3 \mathrm{~mol} \mathrm{NH}_{3}$?
a. $\quad 4.5 \mathrm{~L}$
b. $\quad 27 \mathrm{~L}$
c. $\quad 67.2 \mathrm{~L}$
d. 96 L
e. 101 L
31. How many mol CO_{2} molecules are represented by 1.8×10^{24} atoms?
a. 1
b. 2
$\begin{array}{ll}\text { c. } & 3 \\ \text { d. } & 4\end{array}$
e. 5
32. How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ can be produced by reacting 98 g $\mathrm{H}_{2} \mathrm{SO}_{4}$ with 40 g NaOH ?
a. 18 g
b. $\quad 36 \mathrm{~g}$
c. $\quad 71 \mathrm{~g}$
d. $\quad 142 \mathrm{~g}$
e. $\quad 150 \mathrm{~g}$
33. What are the missing products of the following reaction? $\mathrm{NH}_{4} \mathrm{Cl}+$ $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$ \qquad $+\mathrm{CaCl}_{2}$
a. N_{2}
b. $\quad \mathrm{NH}_{3}$
c. $\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{NH}_{3}+\mathrm{N}_{2}$
e. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
34. How many grams of water can be produced when 8 g of hydrogen react with 8 g oxygen?
a. 8 g
b. $\quad 9 \mathrm{~g}$
c. $\quad 18 \mathrm{~g}$
d. $\quad 27 \mathrm{~g}$
e. 30 g
35. How many atoms are represented in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
a. 4
b. 16
c. 36
d. 60
e. 96
36. What is the density of bromine vapor at STP?
a. $\quad 2.5 \mathrm{~g} / \mathrm{L}$
b. $\quad 2.9 \mathrm{~g} / \mathrm{L}$
c. $\quad 3.6 \mathrm{~g} / \mathrm{L}$
d. $\quad 4.9 \mathrm{~g} / \mathrm{L}$
e. $\quad 7.1 \mathrm{~g} / \mathrm{L}$
37. Fill in the missing reactant: NaOH
$+\underset{\text { a. }}{+} \rightarrow \mathrm{Cl}_{2} \mathrm{NaClO}_{2}+\mathrm{H}_{2} \mathrm{O}$
a. Cl_{2}
b. HCl
c. HClO
d. HClO_{2}
e. HClO_{3}
38. How many grams of Na are present in 30 g NaOH ?
a. $\quad 10 \mathrm{~g}$
b. $\quad 15 \mathrm{~g}$
c. 17 g
d. $\quad 20 \mathrm{~g}$
e. 22 g
39. What is the sum of the coefficients when the following reaction is balanced? _ $\mathrm{C}_{6} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow$ $-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
a. 7
b. 14
c. $\quad 28$
d. 35
e. 42
40. How many atoms are represented by the following formula? $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
a. 6
b. 10
c. $\quad 16$
d. 20
e. 18
41. Twenty-two grams of CO_{2} at STP is identical to
a. 1 mole of CO_{2}
b. $\quad 6.022 \times 10^{23}$ atoms
c. $\quad 6.022 \times 10^{23}$ molecules
d. 11.2 liters
e. 22.4 liters
42. What volume does $8.5 \mathrm{~g} \mathrm{NH}_{3}$ occupy at STP?
a. $\quad 2.81 \mathrm{~L}$
b. $\quad 5.61 \mathrm{~L}$
c. $\quad 11.21 \mathrm{~L}$
d. $\quad 22.41 \mathrm{~L}$
e. $\quad 44.81 \mathrm{~L}$
43. What is the formula of a hydrocarbon composed of 86% carbon and 14% hydrogen by weight?
a. CH_{4}
b. $\mathrm{C}_{2} \mathrm{H}_{4}$
c. $\mathrm{C}_{2} \mathrm{H}_{6}$
d. $\mathrm{C}_{3} \mathrm{H}_{8}$
e. $\mathrm{C}_{4} \mathrm{H}_{6}$
44. How many grams of CO_{2} are produced by the complete reaction of $100 \mathrm{~g} \mathrm{CaCO}_{3}$ with excess HCl ?
a. $\quad 22 \mathrm{~g}$
b. $\quad 44 \mathrm{~g}$
c. $\quad 79 \mathrm{~g}$
d. $\quad 110 \mathrm{~g}$
e. 132 g
45. 28 mL of nitrogen are reacted with 15 mL of hydrogen. How many milliliters of which gas are left unreacted?
a. $5 \mathrm{~mL} \mathrm{H}_{2}$
b. 5 mL N 2
c. $\quad 7 \mathrm{mLH}_{2}$
d. 11 mL N
e. $\quad 23 \mathrm{~mL} \mathrm{~N} \mathrm{~N}_{2}$
46. If 28 mL of nitrogen are reacted with 15 mL of hydrogen, what is the total volume of gas present after the reaction has occurred,
assuming volumes are additive?
a. $\quad 11 \mathrm{~mL}$
b. $\quad 17 \mathrm{~mL}$
c. $\quad 27 \mathrm{~mL}$
d. $\quad 33 \mathrm{~mL}$
e. $\quad 42 \mathrm{~mL}$
47. What is the mass of 1 L of a gas at STP whose molar mass is 254 $\mathrm{g} / \mathrm{mol}$?
a. $\quad 11.3 \mathrm{~g}$
b. $\quad 25.4 \mathrm{~g}$
c. $\quad 30.6 \mathrm{~g}$
d. $\quad 76.5 \mathrm{~g}$
e. 254 g
